xiaozhengsheng 6df0f7d96e 初始版本
2025-08-19 09:49:41 +08:00

422 lines
15 KiB
C

/**
* Copyright (c) 2014 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "ble_conn.h"
#include "conn_mw_ble.h"
#include "ble_serialization.h"
#include "conn_ble_user_mem.h"
#if defined(NRF_SD_BLE_API_VERSION) && ( (NRF_SD_BLE_API_VERSION >= 5) || (NRF_SD_BLE_API_VERSION == 3))
#include "nrf_sdh_ble.h"
#endif
#include <string.h>
extern sercon_ble_user_mem_t m_conn_user_mem_table[];
#if defined(NRF_SD_BLE_API_VERSION) && NRF_SD_BLE_API_VERSION < 4
uint32_t conn_mw_ble_tx_packet_count_get(uint8_t const * const p_rx_buf,
uint32_t rx_buf_len,
uint8_t * const p_tx_buf,
uint32_t * const p_tx_buf_len)
{
SER_ASSERT_NOT_NULL(p_rx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf_len);
uint8_t count;
uint16_t conn_handle;
uint8_t * p_count = &count;
uint32_t err_code = NRF_SUCCESS;
uint32_t sd_err_code;
err_code = ble_tx_packet_count_get_req_dec(p_rx_buf, rx_buf_len, &conn_handle, &p_count);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
sd_err_code = sd_ble_tx_packet_count_get(conn_handle, p_count);
err_code = ble_tx_packet_count_get_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, p_count);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
#endif
uint32_t conn_mw_ble_uuid_vs_add(uint8_t const * const p_rx_buf,
uint32_t rx_buf_len,
uint8_t * const p_tx_buf,
uint32_t * const p_tx_buf_len)
{
SER_ASSERT_NOT_NULL(p_rx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf_len);
ble_uuid128_t uuid;
ble_uuid128_t * p_uuid = &uuid;
uint8_t uuid_type;
uint8_t * p_uuid_type = &uuid_type;
uint32_t err_code = NRF_SUCCESS;
uint32_t sd_err_code;
err_code = ble_uuid_vs_add_req_dec(p_rx_buf, rx_buf_len, &p_uuid, &p_uuid_type);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
sd_err_code = sd_ble_uuid_vs_add(p_uuid, p_uuid_type);
err_code = ble_uuid_vs_add_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, p_uuid_type);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
uint32_t conn_mw_ble_uuid_decode(uint8_t const * const p_rx_buf,
uint32_t rx_buf_len,
uint8_t * const p_tx_buf,
uint32_t * const p_tx_buf_len)
{
SER_ASSERT_NOT_NULL(p_rx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf_len);
uint8_t raw_uuid[16];
uint8_t uuid_len = sizeof (raw_uuid);
uint8_t * p_raw_uuid = raw_uuid;
ble_uuid_t uuid;
ble_uuid_t * p_uuid = &uuid;
uint32_t err_code = NRF_SUCCESS;
uint32_t sd_err_code;
err_code = ble_uuid_decode_req_dec(p_rx_buf, rx_buf_len, &uuid_len, &p_raw_uuid, &p_uuid);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
sd_err_code = sd_ble_uuid_decode(uuid_len, p_raw_uuid, p_uuid);
err_code = ble_uuid_decode_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, p_uuid);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
uint32_t conn_mw_ble_uuid_encode(uint8_t const * const p_rx_buf,
uint32_t rx_buf_len,
uint8_t * const p_tx_buf,
uint32_t * const p_tx_buf_len)
{
SER_ASSERT_NOT_NULL(p_rx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf_len);
uint8_t raw_uuid[16];
uint8_t uuid_len = sizeof (raw_uuid);
uint8_t * p_uuid_len = &uuid_len;
uint8_t * p_raw_uuid = raw_uuid;
ble_uuid_t uuid;
ble_uuid_t * p_uuid = &uuid;
uint32_t err_code = NRF_SUCCESS;
uint32_t sd_err_code;
memset(&uuid, 0, sizeof(uuid));
err_code = ble_uuid_encode_req_dec(p_rx_buf, rx_buf_len, &p_uuid, &p_uuid_len, &p_raw_uuid);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
sd_err_code = sd_ble_uuid_encode(p_uuid, p_uuid_len, p_raw_uuid);
err_code = ble_uuid_encode_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, uuid_len, p_raw_uuid);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
uint32_t conn_mw_ble_version_get(uint8_t const * const p_rx_buf,
uint32_t rx_buf_len,
uint8_t * const p_tx_buf,
uint32_t * const p_tx_buf_len)
{
SER_ASSERT_NOT_NULL(p_rx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf_len);
ble_version_t version;
ble_version_t * p_version = &version;
uint32_t err_code = NRF_SUCCESS;
uint32_t sd_err_code;
err_code = ble_version_get_req_dec(p_rx_buf, rx_buf_len, &p_version);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
sd_err_code = sd_ble_version_get(p_version);
err_code = ble_version_get_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, p_version);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
uint32_t conn_mw_ble_opt_get(uint8_t const * const p_rx_buf,
uint32_t rx_buf_len,
uint8_t * const p_tx_buf,
uint32_t * const p_tx_buf_len)
{
SER_ASSERT_NOT_NULL(p_rx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf_len);
uint32_t opt_id;
ble_opt_t opt;
ble_opt_t *p_opt = &opt;
uint32_t err_code = NRF_SUCCESS;
uint32_t sd_err_code;
err_code = ble_opt_get_req_dec(p_rx_buf, rx_buf_len, &opt_id, &p_opt);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
uint16_t act_latency;
uint8_t passkey[BLE_GAP_PASSKEY_LEN];
/* Initialaize appropriate pointers inside opt union based on opt_id */
switch (opt_id)
{
case BLE_GAP_OPT_LOCAL_CONN_LATENCY:
opt.gap_opt.local_conn_latency.p_actual_latency = &act_latency;
break;
case BLE_GAP_OPT_PASSKEY:
opt.gap_opt.passkey.p_passkey = passkey;
break;
}
sd_err_code = sd_ble_opt_get(opt_id, p_opt);
err_code = ble_opt_get_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len, opt_id, p_opt);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
uint32_t conn_mw_ble_opt_set(uint8_t const * const p_rx_buf,
uint32_t rx_buf_len,
uint8_t * const p_tx_buf,
uint32_t * const p_tx_buf_len)
{
SER_ASSERT_NOT_NULL(p_rx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf_len);
uint32_t opt_id = 0xFFFFFFFF;
uint16_t act_latency;
uint8_t passkey[BLE_GAP_PASSKEY_LEN];
uint32_t err_code = NRF_SUCCESS;
/* Pre-decode type of ble_opt_t union */
err_code = ble_opt_id_pre_dec(p_rx_buf, rx_buf_len, &opt_id);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
ble_opt_t opt;
ble_opt_t *p_opt = &opt;
/* Initialaize appropriate pointers inside opt union based on opt_id */
switch (opt_id)
{
case BLE_GAP_OPT_LOCAL_CONN_LATENCY:
opt.gap_opt.local_conn_latency.p_actual_latency = &act_latency;
break;
case BLE_GAP_OPT_PASSKEY:
opt.gap_opt.passkey.p_passkey = passkey;
break;
}
uint32_t sd_err_code;
err_code = ble_opt_set_req_dec(p_rx_buf, rx_buf_len, &opt_id, &p_opt);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
sd_err_code = sd_ble_opt_set(opt_id, p_opt);
err_code = ble_opt_set_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
uint32_t conn_mw_ble_enable(uint8_t const * const p_rx_buf,
uint32_t rx_buf_len,
uint8_t * const p_tx_buf,
uint32_t * const p_tx_buf_len)
{
SER_ASSERT_NOT_NULL(p_rx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf_len);
uint32_t app_ram_base;
/*lint --e{10} --e{19} --e{27} --e{40} --e{529} -save suppress Error 27: Illegal character */
#if defined(_WIN32) || defined(__unix) || defined(__APPLE__)
uint32_t ram_start = 0;
#elif defined ( __CC_ARM )
extern uint32_t Image$$RW_IRAM1$$Base;
volatile uint32_t ram_start = (uint32_t) &Image$$RW_IRAM1$$Base;
#elif defined ( __ICCARM__ )
extern uint32_t __ICFEDIT_region_RAM_start__;
volatile uint32_t ram_start = (uint32_t) &__ICFEDIT_region_RAM_start__;
#elif defined ( __GNUC__ )
extern uint32_t __data_start__;
volatile uint32_t ram_start = (uint32_t) &__data_start__;
#endif
app_ram_base = ram_start;
uint32_t err_code = NRF_SUCCESS;
uint32_t sd_err_code;
#if defined(NRF_SD_BLE_API_VERSION) && NRF_SD_BLE_API_VERSION < 4
ble_enable_params_t params;
ble_enable_params_t * p_params = &params;
ble_conn_bw_counts_t conn_bw_counts;
params.common_enable_params.p_conn_bw_counts = &conn_bw_counts;
uint8_t gap_device_name_value[BLE_GAP_DEVNAME_MAX_LEN];
ble_gap_device_name_t device_name;
device_name.max_len = BLE_GAP_DEVNAME_MAX_LEN;
device_name.p_value = gap_device_name_value;
params.gap_enable_params.p_device_name = &device_name;
err_code = ble_enable_req_dec(p_rx_buf, rx_buf_len, &p_params);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
#ifndef UNIT_TEST
sd_err_code = nrf_sdh_ble_enable(p_params, &app_ram_base);
#else
sd_err_code = NRF_SUCCESS;
#endif
#else
err_code = ble_enable_req_dec(p_rx_buf, rx_buf_len);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
#if defined(NRF_SD_BLE_API_VERSION) && NRF_SD_BLE_API_VERSION <= 4
//Enable BLE SDH to enable events from BLE.
sd_err_code = sd_ble_enable(&app_ram_base);
#else
//Enable BLE SDH to enable events from BLE.
sd_err_code = nrf_sdh_ble_enable(&app_ram_base);
#endif
#endif
err_code = ble_enable_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
(void)app_ram_base;
return err_code;
}
uint32_t conn_mw_ble_user_mem_reply(uint8_t const * const p_rx_buf,
uint32_t rx_buf_len,
uint8_t * const p_tx_buf,
uint32_t * const p_tx_buf_len)
{
SER_ASSERT_NOT_NULL(p_rx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf_len);
ble_user_mem_block_t mem_block;
ble_user_mem_block_t * p_mem_block = &mem_block;
uint32_t err_code = NRF_SUCCESS;
uint32_t user_mem_tab_index;
uint16_t conn_handle;
/* Allocate user memory context for SoftDevice */
uint32_t sd_err_code;
err_code = ble_user_mem_reply_req_dec(p_rx_buf, rx_buf_len, &conn_handle, &p_mem_block);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
if (p_mem_block != NULL)
{
//Use the context if p_mem_block was not null
err_code = conn_ble_user_mem_context_create(&user_mem_tab_index);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
m_conn_user_mem_table[user_mem_tab_index].conn_handle = conn_handle;
m_conn_user_mem_table[user_mem_tab_index].mem_block.len = p_mem_block->len;
p_mem_block = &(m_conn_user_mem_table[user_mem_tab_index].mem_block);
}
sd_err_code = sd_ble_user_mem_reply(conn_handle, p_mem_block);
err_code = ble_user_mem_reply_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
#if NRF_SD_BLE_API_VERSION >= 4
uint32_t conn_mw_ble_cfg_set(uint8_t const * const p_rx_buf,
uint32_t rx_buf_len,
uint8_t * const p_tx_buf,
uint32_t * const p_tx_buf_len)
{
SER_ASSERT_NOT_NULL(p_rx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf);
SER_ASSERT_NOT_NULL(p_tx_buf_len);
uint32_t app_ram_base;
/*lint --e{10} --e{19} --e{27} --e{40} --e{529} -save suppress Error 27: Illegal character */
#if defined(_WIN32) || defined(__unix) || defined(__APPLE__)
uint32_t ram_start = 0;
#elif defined ( __CC_ARM )
extern uint32_t Image$$RW_IRAM1$$Base;
volatile uint32_t ram_start = (uint32_t) &Image$$RW_IRAM1$$Base;
#elif defined ( __ICCARM__ )
extern uint32_t __ICFEDIT_region_RAM_start__;
volatile uint32_t ram_start = (uint32_t) &__ICFEDIT_region_RAM_start__;
#elif defined ( __GNUC__ )
extern uint32_t __data_start__;
volatile uint32_t ram_start = (uint32_t) &__data_start__;
#endif
app_ram_base = ram_start;
uint32_t err_code = NRF_SUCCESS;
uint32_t sd_err_code;
uint32_t cfg_id;
ble_cfg_t cfg;
uint8_t gap_device_name_value[BLE_GAP_DEVNAME_MAX_LEN];
cfg.gap_cfg.device_name_cfg.p_value = gap_device_name_value;
cfg.gap_cfg.device_name_cfg.max_len = BLE_GAP_DEVNAME_MAX_LEN;
ble_cfg_t * p_cfg = &cfg;
err_code = ble_cfg_set_req_dec(p_rx_buf, rx_buf_len, &cfg_id, &p_cfg);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
sd_err_code = sd_ble_cfg_set(cfg_id,p_cfg, app_ram_base);
err_code = ble_cfg_set_rsp_enc(sd_err_code, p_tx_buf, p_tx_buf_len);
SER_ASSERT(err_code == NRF_SUCCESS, err_code);
return err_code;
}
#endif