515 lines
17 KiB
C
515 lines
17 KiB
C
/**
|
|
* Copyright (c) 2014 - 2020, Nordic Semiconductor ASA
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form, except as embedded into a Nordic
|
|
* Semiconductor ASA integrated circuit in a product or a software update for
|
|
* such product, must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other
|
|
* materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* 4. This software, with or without modification, must only be used with a
|
|
* Nordic Semiconductor ASA integrated circuit.
|
|
*
|
|
* 5. Any software provided in binary form under this license must not be reverse
|
|
* engineered, decompiled, modified and/or disassembled.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
#include "app_error.h"
|
|
#include "sdk_config.h"
|
|
#include "ser_config.h"
|
|
#include "ser_phy.h"
|
|
#include "ser_hal_transport.h"
|
|
#if defined(APP_SCHEDULER_WITH_PAUSE) && APP_SCHEDULER_WITH_PAUSE
|
|
#include "app_scheduler.h"
|
|
#endif
|
|
#define NRF_LOG_MODULE_NAME ser_hal_transport
|
|
#if SER_HAL_TRANSPORT_CONFIG_LOG_ENABLED
|
|
#define NRF_LOG_LEVEL SER_HAL_TRANSPORT_CONFIG_LOG_LEVEL
|
|
#define NRF_LOG_INFO_COLOR SER_HAL_TRANSPORT_CONFIG_INFO_COLOR
|
|
#define NRF_LOG_DEBUG_COLOR SER_HAL_TRANSPORT_CONFIG_DEBUG_COLOR
|
|
#else //SER_HAL_TRANSPORT_CONFIG_LOG_ENABLED
|
|
#define NRF_LOG_LEVEL 0
|
|
#endif //SER_HAL_TRANSPORT_CONFIG_LOG_ENABLED
|
|
#include "nrf_log.h"
|
|
NRF_LOG_MODULE_REGISTER();
|
|
|
|
/**
|
|
* @brief States of the RX state machine.
|
|
*/
|
|
typedef enum
|
|
{
|
|
HAL_TRANSP_RX_STATE_CLOSED = 0,
|
|
HAL_TRANSP_RX_STATE_IDLE,
|
|
HAL_TRANSP_RX_STATE_RECEIVING,
|
|
HAL_TRANSP_RX_STATE_DROPPING,
|
|
HAL_TRANSP_RX_STATE_RECEIVED,
|
|
HAL_TRANSP_RX_STATE_RECEIVED_PENDING_BUF_REQ,
|
|
HAL_TRANSP_RX_STATE_RECEIVED_DROPPING,
|
|
HAL_TRANSP_RX_STATE_MAX
|
|
}ser_hal_transp_rx_states_t;
|
|
|
|
/**
|
|
* @brief States of the TX state machine.
|
|
*/
|
|
typedef enum
|
|
{
|
|
HAL_TRANSP_TX_STATE_CLOSED = 0,
|
|
HAL_TRANSP_TX_STATE_IDLE,
|
|
HAL_TRANSP_TX_STATE_TX_ALLOCATED,
|
|
HAL_TRANSP_TX_STATE_TRANSMITTING,
|
|
HAL_TRANSP_TX_STATE_TRANSMITTED,
|
|
HAL_TRANSP_TX_STATE_MAX
|
|
}ser_hal_transp_tx_states_t;
|
|
|
|
/**
|
|
* @brief RX state.
|
|
*/
|
|
static ser_hal_transp_rx_states_t m_rx_state = HAL_TRANSP_RX_STATE_CLOSED;
|
|
/**
|
|
* @brief TX state.
|
|
*/
|
|
static ser_hal_transp_tx_states_t m_tx_state = HAL_TRANSP_TX_STATE_CLOSED;
|
|
|
|
/**
|
|
* @brief Transmission buffer.
|
|
*/
|
|
static uint8_t m_tx_buffer[SER_HAL_TRANSPORT_TX_MAX_PKT_SIZE];
|
|
/**
|
|
* @brief Reception buffer.
|
|
*/
|
|
static uint8_t m_rx_buffer[SER_HAL_TRANSPORT_RX_MAX_PKT_SIZE];
|
|
|
|
/**
|
|
* @brief Callback function handler for Serialization HAL Transport layer events.
|
|
*/
|
|
static ser_hal_transport_events_handler_t m_events_handler = NULL;
|
|
|
|
|
|
/**
|
|
* @brief A callback function to be used to handle a PHY module events. This function is called in
|
|
* an interrupt context.
|
|
*/
|
|
static void phy_events_handler(ser_phy_evt_t phy_event)
|
|
{
|
|
uint32_t err_code = 0;
|
|
ser_hal_transport_evt_t hal_transp_event;
|
|
|
|
memset(&hal_transp_event, 0, sizeof (ser_hal_transport_evt_t));
|
|
hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_TYPE_MAX;
|
|
|
|
NRF_LOG_INFO("phy evt:%d", phy_event.evt_type);
|
|
switch (phy_event.evt_type)
|
|
{
|
|
case SER_PHY_EVT_TX_PKT_SENT:
|
|
{
|
|
if (HAL_TRANSP_TX_STATE_TRANSMITTING == m_tx_state)
|
|
{
|
|
m_tx_state = HAL_TRANSP_TX_STATE_TRANSMITTED;
|
|
NRF_LOG_INFO("tx free");
|
|
err_code = ser_hal_transport_tx_pkt_free(m_tx_buffer);
|
|
APP_ERROR_CHECK(err_code);
|
|
/* An event to an upper layer that a packet has been transmitted. */
|
|
hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_TX_PKT_SENT;
|
|
m_events_handler(hal_transp_event);
|
|
}
|
|
else
|
|
{
|
|
/* Lower layer should not generate this event in current state. */
|
|
APP_ERROR_CHECK_BOOL(false);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SER_PHY_EVT_RX_BUF_REQUEST:
|
|
{
|
|
/* An event to an upper layer that a packet is being scheduled to receive or to drop. */
|
|
hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_RX_PKT_RECEIVING;
|
|
|
|
/* Receive or drop a packet. */
|
|
if (phy_event.evt_params.rx_buf_request.num_of_bytes <= sizeof (m_rx_buffer))
|
|
{
|
|
if (HAL_TRANSP_RX_STATE_IDLE == m_rx_state)
|
|
{
|
|
m_events_handler(hal_transp_event);
|
|
err_code = ser_phy_rx_buf_set(m_rx_buffer);
|
|
APP_ERROR_CHECK(err_code);
|
|
m_rx_state = HAL_TRANSP_RX_STATE_RECEIVING;
|
|
}
|
|
else if (HAL_TRANSP_RX_STATE_RECEIVED == m_rx_state)
|
|
{
|
|
/* It is OK to get know higher layer at this point that we are going to receive
|
|
* a new packet even though we will start receiving when rx buffer is freed. */
|
|
m_events_handler(hal_transp_event);
|
|
m_rx_state = HAL_TRANSP_RX_STATE_RECEIVED_PENDING_BUF_REQ;
|
|
}
|
|
else
|
|
{
|
|
/* Lower layer should not generate this event in current state. */
|
|
APP_ERROR_CHECK_BOOL(false);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* There is not enough memory but packet has to be received to dummy location. */
|
|
if (HAL_TRANSP_RX_STATE_IDLE == m_rx_state)
|
|
{
|
|
m_events_handler(hal_transp_event);
|
|
err_code = ser_phy_rx_buf_set(NULL);
|
|
APP_ERROR_CHECK(err_code);
|
|
m_rx_state = HAL_TRANSP_RX_STATE_DROPPING;
|
|
}
|
|
else if (HAL_TRANSP_RX_STATE_RECEIVED == m_rx_state)
|
|
{
|
|
m_events_handler(hal_transp_event);
|
|
err_code = ser_phy_rx_buf_set(NULL);
|
|
APP_ERROR_CHECK(err_code);
|
|
m_rx_state = HAL_TRANSP_RX_STATE_RECEIVED_DROPPING;
|
|
}
|
|
else
|
|
{
|
|
/* Lower layer should not generate this event in current state. */
|
|
APP_ERROR_CHECK_BOOL(false);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SER_PHY_EVT_RX_PKT_RECEIVED:
|
|
{
|
|
if (HAL_TRANSP_RX_STATE_RECEIVING == m_rx_state)
|
|
{
|
|
m_rx_state = HAL_TRANSP_RX_STATE_RECEIVED;
|
|
/* Generate the event to an upper layer. */
|
|
hal_transp_event.evt_type =
|
|
SER_HAL_TRANSP_EVT_RX_PKT_RECEIVED;
|
|
hal_transp_event.evt_params.rx_pkt_received.p_buffer =
|
|
phy_event.evt_params.rx_pkt_received.p_buffer;
|
|
hal_transp_event.evt_params.rx_pkt_received.num_of_bytes =
|
|
phy_event.evt_params.rx_pkt_received.num_of_bytes;
|
|
m_events_handler(hal_transp_event);
|
|
}
|
|
else
|
|
{
|
|
/* Lower layer should not generate this event in current state. */
|
|
APP_ERROR_CHECK_BOOL(false);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SER_PHY_EVT_RX_PKT_DROPPED:
|
|
{
|
|
if (HAL_TRANSP_RX_STATE_DROPPING == m_rx_state)
|
|
{
|
|
/* Generate the event to an upper layer. */
|
|
hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_RX_PKT_DROPPED;
|
|
m_events_handler(hal_transp_event);
|
|
m_rx_state = HAL_TRANSP_RX_STATE_IDLE;
|
|
}
|
|
else if (HAL_TRANSP_RX_STATE_RECEIVED_DROPPING == m_rx_state)
|
|
{
|
|
/* Generate the event to an upper layer. */
|
|
hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_RX_PKT_DROPPED;
|
|
m_events_handler(hal_transp_event);
|
|
m_rx_state = HAL_TRANSP_RX_STATE_RECEIVED;
|
|
}
|
|
else
|
|
{
|
|
/* Lower layer should not generate this event in current state. */
|
|
APP_ERROR_CHECK_BOOL(false);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SER_PHY_EVT_RX_OVERFLOW_ERROR:
|
|
{
|
|
/* Generate the event to an upper layer. */
|
|
hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_PHY_ERROR;
|
|
hal_transp_event.evt_params.phy_error.error_type =
|
|
SER_HAL_TRANSP_PHY_ERROR_RX_OVERFLOW;
|
|
m_events_handler(hal_transp_event);
|
|
break;
|
|
}
|
|
|
|
case SER_PHY_EVT_TX_OVERREAD_ERROR:
|
|
{
|
|
/* Generate the event to an upper layer. */
|
|
hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_PHY_ERROR;
|
|
hal_transp_event.evt_params.phy_error.error_type =
|
|
SER_HAL_TRANSP_PHY_ERROR_TX_OVERREAD;
|
|
m_events_handler(hal_transp_event);
|
|
break;
|
|
}
|
|
|
|
case SER_PHY_EVT_HW_ERROR:
|
|
{
|
|
/* Generate the event to an upper layer. */
|
|
hal_transp_event.evt_type = SER_HAL_TRANSP_EVT_PHY_ERROR;
|
|
hal_transp_event.evt_params.phy_error.error_type =
|
|
SER_HAL_TRANSP_PHY_ERROR_HW_ERROR;
|
|
hal_transp_event.evt_params.phy_error.hw_error_code =
|
|
phy_event.evt_params.hw_error.error_code;
|
|
if (HAL_TRANSP_TX_STATE_TRANSMITTING == m_tx_state)
|
|
{
|
|
m_tx_state = HAL_TRANSP_TX_STATE_TRANSMITTED;
|
|
err_code = ser_hal_transport_tx_pkt_free(phy_event.evt_params.hw_error.p_buffer);
|
|
APP_ERROR_CHECK(err_code);
|
|
#if defined(APP_SCHEDULER_WITH_PAUSE) && APP_SCHEDULER_WITH_PAUSE
|
|
app_sched_resume();
|
|
#endif
|
|
/* An event to an upper layer that a packet has been transmitted. */
|
|
}
|
|
else if (HAL_TRANSP_RX_STATE_RECEIVING == m_rx_state)
|
|
{
|
|
m_rx_state = HAL_TRANSP_RX_STATE_RECEIVED;
|
|
err_code = ser_hal_transport_rx_pkt_free(phy_event.evt_params.hw_error.p_buffer);
|
|
APP_ERROR_CHECK(err_code);
|
|
}
|
|
m_events_handler(hal_transp_event);
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
{
|
|
APP_ERROR_CHECK_BOOL(false);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ser_hal_transport_reset(void)
|
|
{
|
|
m_rx_state = HAL_TRANSP_RX_STATE_IDLE;
|
|
m_tx_state = HAL_TRANSP_TX_STATE_IDLE;
|
|
}
|
|
|
|
uint32_t ser_hal_transport_open(ser_hal_transport_events_handler_t events_handler)
|
|
{
|
|
uint32_t err_code = NRF_SUCCESS;
|
|
|
|
if ((HAL_TRANSP_RX_STATE_CLOSED != m_rx_state) || (HAL_TRANSP_TX_STATE_CLOSED != m_tx_state))
|
|
{
|
|
err_code = NRF_ERROR_INVALID_STATE;
|
|
}
|
|
else if (NULL == events_handler)
|
|
{
|
|
err_code = NRF_ERROR_NULL;
|
|
}
|
|
else
|
|
{
|
|
/* We have to change states before calling lower layer because ser_phy_open() function is
|
|
* going to enable interrupts. On success an event from PHY layer can be emitted immediately
|
|
* after return from ser_phy_open(). */
|
|
m_rx_state = HAL_TRANSP_RX_STATE_IDLE;
|
|
m_tx_state = HAL_TRANSP_TX_STATE_IDLE;
|
|
|
|
m_events_handler = events_handler;
|
|
|
|
/* Initialize a PHY module. */
|
|
err_code = ser_phy_open(phy_events_handler);
|
|
|
|
if (NRF_SUCCESS != err_code)
|
|
{
|
|
m_rx_state = HAL_TRANSP_RX_STATE_CLOSED;
|
|
m_tx_state = HAL_TRANSP_TX_STATE_CLOSED;
|
|
m_events_handler = NULL;
|
|
|
|
if (NRF_ERROR_INVALID_PARAM != err_code)
|
|
{
|
|
err_code = NRF_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
return err_code;
|
|
}
|
|
|
|
|
|
void ser_hal_transport_close(void)
|
|
{
|
|
/* Reset generic handler for all events, reset internal states and close PHY module. */
|
|
ser_phy_interrupts_disable();
|
|
m_rx_state = HAL_TRANSP_RX_STATE_CLOSED;
|
|
m_tx_state = HAL_TRANSP_TX_STATE_CLOSED;
|
|
|
|
m_events_handler = NULL;
|
|
|
|
ser_phy_close();
|
|
}
|
|
|
|
|
|
uint32_t ser_hal_transport_rx_pkt_free(uint8_t * p_buffer)
|
|
{
|
|
|
|
NRF_LOG_INFO("rx pkt free:%d", p_buffer);
|
|
uint32_t err_code = NRF_SUCCESS;
|
|
|
|
ser_phy_interrupts_disable();
|
|
|
|
if (NULL == p_buffer)
|
|
{
|
|
err_code = NRF_ERROR_NULL;
|
|
}
|
|
else if (p_buffer != m_rx_buffer)
|
|
{
|
|
err_code = NRF_ERROR_INVALID_ADDR;
|
|
}
|
|
else if (HAL_TRANSP_RX_STATE_RECEIVED == m_rx_state)
|
|
{
|
|
m_rx_state = HAL_TRANSP_RX_STATE_IDLE;
|
|
}
|
|
else if (HAL_TRANSP_RX_STATE_RECEIVED_DROPPING == m_rx_state)
|
|
{
|
|
m_rx_state = HAL_TRANSP_RX_STATE_DROPPING;
|
|
}
|
|
else if (HAL_TRANSP_RX_STATE_RECEIVED_PENDING_BUF_REQ == m_rx_state)
|
|
{
|
|
err_code = ser_phy_rx_buf_set(m_rx_buffer);
|
|
|
|
if (NRF_SUCCESS == err_code)
|
|
{
|
|
m_rx_state = HAL_TRANSP_RX_STATE_RECEIVING;
|
|
}
|
|
else
|
|
{
|
|
err_code = NRF_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Upper layer should not call this function in current state. */
|
|
err_code = NRF_ERROR_INVALID_STATE;
|
|
}
|
|
ser_phy_interrupts_enable();
|
|
|
|
return err_code;
|
|
}
|
|
|
|
|
|
uint32_t ser_hal_transport_tx_pkt_alloc(uint8_t * * pp_memory, uint16_t * p_num_of_bytes)
|
|
{
|
|
uint32_t err_code = NRF_SUCCESS;
|
|
|
|
if ((NULL == pp_memory) || (NULL == p_num_of_bytes))
|
|
{
|
|
err_code = NRF_ERROR_NULL;
|
|
}
|
|
else if (HAL_TRANSP_TX_STATE_CLOSED == m_tx_state)
|
|
{
|
|
err_code = NRF_ERROR_INVALID_STATE;
|
|
}
|
|
else if (HAL_TRANSP_TX_STATE_IDLE == m_tx_state)
|
|
{
|
|
m_tx_state = HAL_TRANSP_TX_STATE_TX_ALLOCATED;
|
|
*pp_memory = &m_tx_buffer[0];
|
|
*p_num_of_bytes = (uint16_t)sizeof (m_tx_buffer);
|
|
}
|
|
else
|
|
{
|
|
err_code = NRF_ERROR_NO_MEM;
|
|
}
|
|
|
|
return err_code;
|
|
}
|
|
|
|
|
|
uint32_t ser_hal_transport_tx_pkt_send(const uint8_t * p_buffer, uint16_t num_of_bytes)
|
|
{
|
|
uint32_t err_code = NRF_SUCCESS;
|
|
|
|
/* The buffer provided to this function must be allocated through ser_hal_transport_tx_alloc()
|
|
* function - this assures correct state and that correct memory buffer is used. */
|
|
if (NULL == p_buffer)
|
|
{
|
|
err_code = NRF_ERROR_NULL;
|
|
}
|
|
else if (0 == num_of_bytes)
|
|
{
|
|
err_code = NRF_ERROR_INVALID_PARAM;
|
|
}
|
|
else if (p_buffer != m_tx_buffer)
|
|
{
|
|
err_code = NRF_ERROR_INVALID_ADDR;
|
|
}
|
|
else if (num_of_bytes > sizeof (m_tx_buffer))
|
|
{
|
|
err_code = NRF_ERROR_DATA_SIZE;
|
|
}
|
|
else if (HAL_TRANSP_TX_STATE_TX_ALLOCATED == m_tx_state)
|
|
{
|
|
ser_phy_interrupts_disable();
|
|
err_code = ser_phy_tx_pkt_send(p_buffer, num_of_bytes);
|
|
|
|
if (NRF_SUCCESS == err_code)
|
|
{
|
|
m_tx_state = HAL_TRANSP_TX_STATE_TRANSMITTING;
|
|
}
|
|
else
|
|
{
|
|
if (NRF_ERROR_BUSY != err_code)
|
|
{
|
|
err_code = NRF_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
ser_phy_interrupts_enable();
|
|
}
|
|
else
|
|
{
|
|
err_code = NRF_ERROR_INVALID_STATE;
|
|
}
|
|
|
|
return err_code;
|
|
}
|
|
|
|
|
|
uint32_t ser_hal_transport_tx_pkt_free(uint8_t * p_buffer)
|
|
{
|
|
uint32_t err_code = NRF_SUCCESS;
|
|
|
|
if (NULL == p_buffer)
|
|
{
|
|
err_code = NRF_ERROR_NULL;
|
|
}
|
|
else if (p_buffer != m_tx_buffer)
|
|
{
|
|
err_code = NRF_ERROR_INVALID_ADDR;
|
|
}
|
|
else if ((HAL_TRANSP_TX_STATE_TX_ALLOCATED == m_tx_state) ||
|
|
(HAL_TRANSP_TX_STATE_TRANSMITTED == m_tx_state))
|
|
{
|
|
/* Release TX buffer for use. */
|
|
m_tx_state = HAL_TRANSP_TX_STATE_IDLE;
|
|
}
|
|
else
|
|
{
|
|
err_code = NRF_ERROR_INVALID_STATE;
|
|
}
|
|
|
|
return err_code;
|
|
}
|