619 lines
17 KiB
C
619 lines
17 KiB
C
/**
|
|
* Copyright (c) 2016 - 2020, Nordic Semiconductor ASA
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form, except as embedded into a Nordic
|
|
* Semiconductor ASA integrated circuit in a product or a software update for
|
|
* such product, must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other
|
|
* materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* 4. This software, with or without modification, must only be used with a
|
|
* Nordic Semiconductor ASA integrated circuit.
|
|
*
|
|
* 5. Any software provided in binary form under this license must not be reverse
|
|
* engineered, decompiled, modified and/or disassembled.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <nordic_common.h>
|
|
#include "nrf_drv_clock.h"
|
|
|
|
#if NRF_MODULE_ENABLED(NRF_CLOCK)
|
|
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
#include "nrf_sdh.h"
|
|
#include "nrf_sdh_soc.h"
|
|
#endif
|
|
|
|
#include <hal/nrf_wdt.h>
|
|
|
|
#define NRF_LOG_MODULE_NAME clock
|
|
#if CLOCK_CONFIG_LOG_ENABLED
|
|
#define NRF_LOG_LEVEL CLOCK_CONFIG_LOG_LEVEL
|
|
#define NRF_LOG_INFO_COLOR CLOCK_CONFIG_INFO_COLOR
|
|
#define NRF_LOG_DEBUG_COLOR CLOCK_CONFIG_DEBUG_COLOR
|
|
#else //CLOCK_CONFIG_LOG_ENABLED
|
|
#define NRF_LOG_LEVEL 0
|
|
#endif //CLOCK_CONFIG_LOG_ENABLED
|
|
#include "nrf_log.h"
|
|
NRF_LOG_MODULE_REGISTER();
|
|
|
|
#define EVT_TO_STR(event) \
|
|
(event == NRF_CLOCK_EVENT_HFCLKSTARTED ? "NRF_CLOCK_EVENT_HFCLKSTARTED" : \
|
|
(event == NRF_CLOCK_EVENT_LFCLKSTARTED ? "NRF_CLOCK_EVENT_LFCLKSTARTED" : \
|
|
(event == NRF_CLOCK_EVENT_DONE ? "NRF_CLOCK_EVENT_DONE" : \
|
|
(event == NRF_CLOCK_EVENT_CTTO ? "NRF_CLOCK_EVENT_CTTO" : \
|
|
"UNKNOWN EVENT"))))
|
|
|
|
|
|
/*lint -save -e652 */
|
|
#define NRF_CLOCK_LFCLK_RC CLOCK_LFCLKSRC_SRC_RC
|
|
#define NRF_CLOCK_LFCLK_Xtal CLOCK_LFCLKSRC_SRC_Xtal
|
|
#define NRF_CLOCK_LFCLK_Synth CLOCK_LFCLKSRC_SRC_Synth
|
|
/*lint -restore */
|
|
|
|
#if (CLOCK_CONFIG_LF_SRC == NRF_CLOCK_LFCLK_RC) && !defined(SOFTDEVICE_PRESENT)
|
|
#define CALIBRATION_SUPPORT 1
|
|
#else
|
|
#define CALIBRATION_SUPPORT 0
|
|
#endif
|
|
typedef enum
|
|
{
|
|
CAL_STATE_IDLE,
|
|
CAL_STATE_CT,
|
|
CAL_STATE_HFCLK_REQ,
|
|
CAL_STATE_CAL,
|
|
CAL_STATE_ABORT,
|
|
} nrf_drv_clock_cal_state_t;
|
|
|
|
/**@brief CLOCK control block. */
|
|
typedef struct
|
|
{
|
|
bool module_initialized; /*< Indicate the state of module */
|
|
volatile bool hfclk_on; /*< High-frequency clock state. */
|
|
volatile bool lfclk_on; /*< Low-frequency clock state. */
|
|
volatile uint32_t hfclk_requests; /*< High-frequency clock request counter. */
|
|
volatile nrf_drv_clock_handler_item_t * p_hf_head;
|
|
volatile uint32_t lfclk_requests; /*< Low-frequency clock request counter. */
|
|
volatile nrf_drv_clock_handler_item_t * p_lf_head;
|
|
#if CALIBRATION_SUPPORT
|
|
nrf_drv_clock_handler_item_t cal_hfclk_started_handler_item;
|
|
nrf_drv_clock_event_handler_t cal_done_handler;
|
|
volatile nrf_drv_clock_cal_state_t cal_state;
|
|
#endif // CALIBRATION_SUPPORT
|
|
} nrf_drv_clock_cb_t;
|
|
|
|
static nrf_drv_clock_cb_t m_clock_cb;
|
|
|
|
static void clock_irq_handler(nrfx_clock_evt_type_t evt);
|
|
|
|
static void lfclk_stop(void)
|
|
{
|
|
#if CALIBRATION_SUPPORT
|
|
nrfx_clock_calibration_timer_stop();
|
|
#endif
|
|
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
// If LFCLK is requested to stop while SD is still enabled,
|
|
// it indicates an error in the application.
|
|
// Enabling SD should increment the LFCLK request.
|
|
ASSERT(!nrf_sdh_is_enabled());
|
|
#endif // SOFTDEVICE_PRESENT
|
|
|
|
// LFCLK can be started independently by the watchdog and cannot be stopped
|
|
// by the CLOCK peripheral. This code handles this situation and prevents LFCLK to be stopped.
|
|
// Otherwise driver can stuck when waiting for the operation to complete.
|
|
if (!nrf_wdt_started())
|
|
{
|
|
nrfx_clock_lfclk_stop();
|
|
m_clock_cb.lfclk_on = false;
|
|
}
|
|
}
|
|
|
|
static void hfclk_start(void)
|
|
{
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
if (nrf_sdh_is_enabled())
|
|
{
|
|
(void)sd_clock_hfclk_request();
|
|
return;
|
|
}
|
|
#endif // SOFTDEVICE_PRESENT
|
|
|
|
nrfx_clock_hfclk_start();
|
|
}
|
|
|
|
static void hfclk_stop(void)
|
|
{
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
if (nrf_sdh_is_enabled())
|
|
{
|
|
(void)sd_clock_hfclk_release();
|
|
m_clock_cb.hfclk_on = false;
|
|
return;
|
|
}
|
|
#endif // SOFTDEVICE_PRESENT
|
|
|
|
nrfx_clock_hfclk_stop();
|
|
m_clock_cb.hfclk_on = false;
|
|
}
|
|
|
|
bool nrf_drv_clock_init_check(void)
|
|
{
|
|
return m_clock_cb.module_initialized;
|
|
}
|
|
|
|
ret_code_t nrf_drv_clock_init(void)
|
|
{
|
|
ret_code_t err_code = NRF_SUCCESS;
|
|
if (m_clock_cb.module_initialized)
|
|
{
|
|
err_code = NRF_ERROR_MODULE_ALREADY_INITIALIZED;
|
|
}
|
|
else
|
|
{
|
|
m_clock_cb.p_hf_head = NULL;
|
|
m_clock_cb.hfclk_requests = 0;
|
|
m_clock_cb.p_lf_head = NULL;
|
|
m_clock_cb.lfclk_requests = 0;
|
|
err_code = nrfx_clock_init(clock_irq_handler);
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
if (!nrf_sdh_is_enabled())
|
|
#endif
|
|
{
|
|
nrfx_clock_enable();
|
|
}
|
|
|
|
#if CALIBRATION_SUPPORT
|
|
m_clock_cb.cal_state = CAL_STATE_IDLE;
|
|
#endif
|
|
|
|
m_clock_cb.module_initialized = true;
|
|
}
|
|
|
|
if (nrf_wdt_started())
|
|
{
|
|
m_clock_cb.lfclk_on = true;
|
|
}
|
|
|
|
NRF_LOG_INFO("Function: %s, error code: %s.",
|
|
(uint32_t)__func__,
|
|
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
|
|
return err_code;
|
|
}
|
|
|
|
void nrf_drv_clock_uninit(void)
|
|
{
|
|
ASSERT(m_clock_cb.module_initialized);
|
|
nrfx_clock_disable();
|
|
nrfx_clock_uninit();
|
|
|
|
m_clock_cb.module_initialized = false;
|
|
}
|
|
|
|
static void item_enqueue(nrf_drv_clock_handler_item_t ** p_head,
|
|
nrf_drv_clock_handler_item_t * p_item)
|
|
{
|
|
nrf_drv_clock_handler_item_t * p_next = *p_head;
|
|
while (p_next)
|
|
{
|
|
if (p_next == p_item)
|
|
{
|
|
return;
|
|
}
|
|
p_next = p_next->p_next;
|
|
}
|
|
|
|
p_item->p_next = (*p_head ? *p_head : NULL);
|
|
*p_head = p_item;
|
|
}
|
|
|
|
static nrf_drv_clock_handler_item_t * item_dequeue(nrf_drv_clock_handler_item_t ** p_head)
|
|
{
|
|
nrf_drv_clock_handler_item_t * p_item = *p_head;
|
|
if (p_item)
|
|
{
|
|
*p_head = p_item->p_next;
|
|
}
|
|
return p_item;
|
|
}
|
|
|
|
void nrf_drv_clock_lfclk_request(nrf_drv_clock_handler_item_t * p_handler_item)
|
|
{
|
|
ASSERT(m_clock_cb.module_initialized);
|
|
|
|
if (m_clock_cb.lfclk_on)
|
|
{
|
|
if (p_handler_item)
|
|
{
|
|
p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_LFCLK_STARTED);
|
|
}
|
|
CRITICAL_REGION_ENTER();
|
|
++(m_clock_cb.lfclk_requests);
|
|
CRITICAL_REGION_EXIT();
|
|
}
|
|
else
|
|
{
|
|
CRITICAL_REGION_ENTER();
|
|
if (p_handler_item)
|
|
{
|
|
item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head,
|
|
p_handler_item);
|
|
}
|
|
if (m_clock_cb.lfclk_requests == 0)
|
|
{
|
|
nrfx_clock_lfclk_start();
|
|
}
|
|
++(m_clock_cb.lfclk_requests);
|
|
CRITICAL_REGION_EXIT();
|
|
}
|
|
|
|
ASSERT(m_clock_cb.lfclk_requests > 0);
|
|
}
|
|
|
|
void nrf_drv_clock_lfclk_release(void)
|
|
{
|
|
ASSERT(m_clock_cb.module_initialized);
|
|
ASSERT(m_clock_cb.lfclk_requests > 0);
|
|
|
|
CRITICAL_REGION_ENTER();
|
|
--(m_clock_cb.lfclk_requests);
|
|
if (m_clock_cb.lfclk_requests == 0)
|
|
{
|
|
lfclk_stop();
|
|
}
|
|
CRITICAL_REGION_EXIT();
|
|
}
|
|
|
|
bool nrf_drv_clock_lfclk_is_running(void)
|
|
{
|
|
ASSERT(m_clock_cb.module_initialized);
|
|
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
if (nrf_sdh_is_enabled())
|
|
{
|
|
return true;
|
|
}
|
|
#endif // SOFTDEVICE_PRESENT
|
|
|
|
return nrfx_clock_lfclk_is_running();
|
|
}
|
|
|
|
void nrf_drv_clock_hfclk_request(nrf_drv_clock_handler_item_t * p_handler_item)
|
|
{
|
|
ASSERT(m_clock_cb.module_initialized);
|
|
|
|
if (m_clock_cb.hfclk_on)
|
|
{
|
|
if (p_handler_item)
|
|
{
|
|
p_handler_item->event_handler(NRF_DRV_CLOCK_EVT_HFCLK_STARTED);
|
|
}
|
|
CRITICAL_REGION_ENTER();
|
|
++(m_clock_cb.hfclk_requests);
|
|
CRITICAL_REGION_EXIT();
|
|
}
|
|
else
|
|
{
|
|
CRITICAL_REGION_ENTER();
|
|
if (p_handler_item)
|
|
{
|
|
item_enqueue((nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head,
|
|
p_handler_item);
|
|
}
|
|
if (m_clock_cb.hfclk_requests == 0)
|
|
{
|
|
hfclk_start();
|
|
}
|
|
++(m_clock_cb.hfclk_requests);
|
|
CRITICAL_REGION_EXIT();
|
|
}
|
|
|
|
ASSERT(m_clock_cb.hfclk_requests > 0);
|
|
}
|
|
|
|
void nrf_drv_clock_hfclk_release(void)
|
|
{
|
|
ASSERT(m_clock_cb.module_initialized);
|
|
ASSERT(m_clock_cb.hfclk_requests > 0);
|
|
|
|
CRITICAL_REGION_ENTER();
|
|
--(m_clock_cb.hfclk_requests);
|
|
if (m_clock_cb.hfclk_requests == 0)
|
|
{
|
|
hfclk_stop();
|
|
}
|
|
CRITICAL_REGION_EXIT();
|
|
}
|
|
|
|
bool nrf_drv_clock_hfclk_is_running(void)
|
|
{
|
|
ASSERT(m_clock_cb.module_initialized);
|
|
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
if (nrf_sdh_is_enabled())
|
|
{
|
|
uint32_t is_running;
|
|
UNUSED_VARIABLE(sd_clock_hfclk_is_running(&is_running));
|
|
return (is_running ? true : false);
|
|
}
|
|
#endif // SOFTDEVICE_PRESENT
|
|
|
|
return nrfx_clock_hfclk_is_running();
|
|
}
|
|
|
|
#if CALIBRATION_SUPPORT
|
|
static void clock_calibration_hf_started(nrf_drv_clock_evt_type_t event)
|
|
{
|
|
if (m_clock_cb.cal_state == CAL_STATE_ABORT)
|
|
{
|
|
nrf_drv_clock_hfclk_release();
|
|
m_clock_cb.cal_state = CAL_STATE_IDLE;
|
|
if (m_clock_cb.cal_done_handler)
|
|
{
|
|
m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
ASSERT(event == NRF_DRV_CLOCK_EVT_HFCLK_STARTED);
|
|
if (nrfx_clock_calibration_start() != NRFX_SUCCESS)
|
|
{
|
|
ASSERT(false);
|
|
}
|
|
}
|
|
}
|
|
#endif // CALIBRATION_SUPPORT
|
|
|
|
ret_code_t nrf_drv_clock_calibration_start(uint8_t interval, nrf_drv_clock_event_handler_t handler)
|
|
{
|
|
ret_code_t err_code = NRF_SUCCESS;
|
|
#if CALIBRATION_SUPPORT
|
|
ASSERT(m_clock_cb.cal_state == CAL_STATE_IDLE);
|
|
if (m_clock_cb.lfclk_on == false)
|
|
{
|
|
err_code = NRF_ERROR_INVALID_STATE;
|
|
}
|
|
else if (m_clock_cb.cal_state == CAL_STATE_IDLE)
|
|
{
|
|
m_clock_cb.cal_done_handler = handler;
|
|
m_clock_cb.cal_hfclk_started_handler_item.event_handler = clock_calibration_hf_started;
|
|
if (interval == 0)
|
|
{
|
|
m_clock_cb.cal_state = CAL_STATE_HFCLK_REQ;
|
|
nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item);
|
|
}
|
|
else
|
|
{
|
|
m_clock_cb.cal_state = CAL_STATE_CT;
|
|
nrfx_clock_calibration_timer_start(interval);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
err_code = NRF_ERROR_BUSY;
|
|
}
|
|
NRF_LOG_WARNING("Function: %s, error code: %s.",
|
|
(uint32_t)__func__,
|
|
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
|
|
return err_code;
|
|
#else
|
|
UNUSED_PARAMETER(interval);
|
|
UNUSED_PARAMETER(handler);
|
|
err_code = NRF_ERROR_FORBIDDEN;
|
|
NRF_LOG_WARNING("Function: %s, error code: %s.",
|
|
(uint32_t)__func__,
|
|
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
|
|
return err_code;
|
|
#endif // CALIBRATION_SUPPORT
|
|
}
|
|
|
|
ret_code_t nrf_drv_clock_calibration_abort(void)
|
|
{
|
|
ret_code_t err_code = NRF_SUCCESS;
|
|
#if CALIBRATION_SUPPORT
|
|
CRITICAL_REGION_ENTER();
|
|
switch (m_clock_cb.cal_state)
|
|
{
|
|
case CAL_STATE_CT:
|
|
nrfx_clock_calibration_timer_stop();
|
|
m_clock_cb.cal_state = CAL_STATE_IDLE;
|
|
if (m_clock_cb.cal_done_handler)
|
|
{
|
|
m_clock_cb.cal_done_handler(NRF_DRV_CLOCK_EVT_CAL_ABORTED);
|
|
}
|
|
break;
|
|
case CAL_STATE_HFCLK_REQ:
|
|
/* fall through. */
|
|
case CAL_STATE_CAL:
|
|
m_clock_cb.cal_state = CAL_STATE_ABORT;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
CRITICAL_REGION_EXIT();
|
|
|
|
NRF_LOG_INFO("Function: %s, error code: %s.",
|
|
(uint32_t)__func__,
|
|
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
|
|
return err_code;
|
|
#else
|
|
err_code = NRF_ERROR_FORBIDDEN;
|
|
NRF_LOG_WARNING("Function: %s, error code: %s.",
|
|
(uint32_t)__func__,
|
|
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
|
|
return err_code;
|
|
#endif // CALIBRATION_SUPPORT
|
|
}
|
|
|
|
ret_code_t nrf_drv_clock_is_calibrating(bool * p_is_calibrating)
|
|
{
|
|
ret_code_t err_code = NRF_SUCCESS;
|
|
#if CALIBRATION_SUPPORT
|
|
ASSERT(m_clock_cb.module_initialized);
|
|
*p_is_calibrating = (m_clock_cb.cal_state != CAL_STATE_IDLE);
|
|
NRF_LOG_INFO("Function: %s, error code: %s.",
|
|
(uint32_t)__func__,
|
|
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
|
|
return err_code;
|
|
#else
|
|
UNUSED_PARAMETER(p_is_calibrating);
|
|
err_code = NRF_ERROR_FORBIDDEN;
|
|
NRF_LOG_WARNING("Function: %s, error code: %s.",
|
|
(uint32_t)__func__,
|
|
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
|
|
return err_code;
|
|
#endif // CALIBRATION_SUPPORT
|
|
}
|
|
|
|
__STATIC_INLINE void clock_clk_started_notify(nrf_drv_clock_evt_type_t evt_type)
|
|
{
|
|
nrf_drv_clock_handler_item_t **p_head;
|
|
if (evt_type == NRF_DRV_CLOCK_EVT_HFCLK_STARTED)
|
|
{
|
|
p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_hf_head;
|
|
}
|
|
else
|
|
{
|
|
p_head = (nrf_drv_clock_handler_item_t **)&m_clock_cb.p_lf_head;
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
nrf_drv_clock_handler_item_t * p_item = item_dequeue(p_head);
|
|
if (!p_item)
|
|
{
|
|
break;
|
|
}
|
|
|
|
p_item->event_handler(evt_type);
|
|
}
|
|
}
|
|
|
|
static void clock_irq_handler(nrfx_clock_evt_type_t evt)
|
|
{
|
|
if (evt == NRFX_CLOCK_EVT_HFCLK_STARTED)
|
|
{
|
|
m_clock_cb.hfclk_on = true;
|
|
clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED);
|
|
}
|
|
if (evt == NRFX_CLOCK_EVT_LFCLK_STARTED)
|
|
{
|
|
m_clock_cb.lfclk_on = true;
|
|
clock_clk_started_notify(NRF_DRV_CLOCK_EVT_LFCLK_STARTED);
|
|
}
|
|
#if CALIBRATION_SUPPORT
|
|
if (evt == NRFX_CLOCK_EVT_CTTO)
|
|
{
|
|
nrf_drv_clock_hfclk_request(&m_clock_cb.cal_hfclk_started_handler_item);
|
|
}
|
|
|
|
if (evt == NRFX_CLOCK_EVT_CAL_DONE)
|
|
{
|
|
nrf_drv_clock_hfclk_release();
|
|
bool aborted = (m_clock_cb.cal_state == CAL_STATE_ABORT);
|
|
m_clock_cb.cal_state = CAL_STATE_IDLE;
|
|
if (m_clock_cb.cal_done_handler)
|
|
{
|
|
m_clock_cb.cal_done_handler(aborted ?
|
|
NRF_DRV_CLOCK_EVT_CAL_ABORTED : NRF_DRV_CLOCK_EVT_CAL_DONE);
|
|
}
|
|
}
|
|
#endif // CALIBRATION_SUPPORT
|
|
}
|
|
|
|
#ifdef SOFTDEVICE_PRESENT
|
|
/**
|
|
* @brief SoftDevice SoC event handler.
|
|
*
|
|
* @param[in] evt_id SoC event.
|
|
* @param[in] p_context Context.
|
|
*/
|
|
static void soc_evt_handler(uint32_t evt_id, void * p_context)
|
|
{
|
|
if (evt_id == NRF_EVT_HFCLKSTARTED)
|
|
{
|
|
m_clock_cb.hfclk_on = true;
|
|
clock_clk_started_notify(NRF_DRV_CLOCK_EVT_HFCLK_STARTED);
|
|
}
|
|
}
|
|
NRF_SDH_SOC_OBSERVER(m_soc_evt_observer, CLOCK_CONFIG_SOC_OBSERVER_PRIO, soc_evt_handler, NULL);
|
|
|
|
/**
|
|
* @brief SoftDevice enable/disable state handler.
|
|
*
|
|
* @param[in] state State.
|
|
* @param[in] p_context Context.
|
|
*/
|
|
static void sd_state_evt_handler(nrf_sdh_state_evt_t state, void * p_context)
|
|
{
|
|
switch (state)
|
|
{
|
|
case NRF_SDH_EVT_STATE_ENABLE_PREPARE:
|
|
NVIC_DisableIRQ(POWER_CLOCK_IRQn);
|
|
break;
|
|
|
|
case NRF_SDH_EVT_STATE_ENABLED:
|
|
CRITICAL_REGION_ENTER();
|
|
/* Make sure that nrf_drv_clock module is initialized */
|
|
if (!m_clock_cb.module_initialized)
|
|
{
|
|
(void)nrf_drv_clock_init();
|
|
}
|
|
/* SD is one of the LFCLK requesters, but it will enable it by itself. */
|
|
++(m_clock_cb.lfclk_requests);
|
|
m_clock_cb.lfclk_on = true;
|
|
CRITICAL_REGION_EXIT();
|
|
break;
|
|
|
|
case NRF_SDH_EVT_STATE_DISABLED:
|
|
/* Reinit interrupts */
|
|
ASSERT(m_clock_cb.module_initialized);
|
|
nrfx_clock_enable();
|
|
|
|
/* SD leaves LFCLK enabled - disable it if it is no longer required. */
|
|
nrf_drv_clock_lfclk_release();
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
NRF_SDH_STATE_OBSERVER(m_sd_state_observer, CLOCK_CONFIG_STATE_OBSERVER_PRIO) =
|
|
{
|
|
.handler = sd_state_evt_handler,
|
|
.p_context = NULL,
|
|
};
|
|
|
|
#endif // SOFTDEVICE_PRESENT
|
|
|
|
#undef NRF_CLOCK_LFCLK_RC
|
|
#undef NRF_CLOCK_LFCLK_Xtal
|
|
#undef NRF_CLOCK_LFCLK_Synth
|
|
|
|
#endif // NRF_MODULE_ENABLED(NRF_CLOCK)
|