xiaozhengsheng 6df0f7d96e 初始版本
2025-08-19 09:49:41 +08:00

1112 lines
37 KiB
C

/**
* Copyright (c) 2016 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdint.h>
#include <stdbool.h>
#include "nrf_error.h"
#include "nrf_drv_rng.h"
#include "app_fifo.h"
#include "mem_manager.h"
#include "mbedtls/ssl.h"
#include "mbedtls/platform.h"
#include "mbedtls/sha256.h"
#include "mbedtls/debug.h"
#include "nrf_tls.h"
#include "nrf_assert.h"
#include "iot_timer.h"
#include "iot_errors.h"
#if TLS_CONFIG_LOG_ENABLED
#define NRF_LOG_MODULE_NAME TLS
#define NRF_LOG_LEVEL TLS_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR TLS_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR TLS_CONFIG_DEBUG_COLOR
#include "nrf_log.h"
NRF_LOG_MODULE_REGISTER();
#define TLS_LOG NRF_LOG_INFO /**< Used for getting trace of execution in the module. */
#define TLS_ERR NRF_LOG_ERROR /**< Used for logging errors in the module. */
#define TLS_DUMP NRF_LOG_HEXDUMP_DEBUG /**< Used for dumping octet information to get details of bond information etc. */
#define TLS_ENTRY() TLS_TRC(">> %s", __func__)
#define TLS_EXIT() TLS_TRC("<< %s", __func__)
#else // TLS_CONFIG_LOG_ENABLED
#define TLS_LOG(...) /**< Disables traces. */
#define TLS_DUMP(...) /**< Disables dumping of octet streams. */
#define TLS_ERR(...) /**< Disables error logs. */
#define TLS_ENTRY(...)
#define TLS_EXIT(...)
#endif // TLS_CONFIG_LOG_ENABLED
#define TIME_PERIOD_INVALID 0xFFFFFFFF /**< Identifier for invalid time period. Used for timer functions. */
#define TLS_MUTEX_LOCK() SDK_MUTEX_LOCK(m_tls_mutex) /**< Lock module using mutex */
#define TLS_MUTEX_UNLOCK() SDK_MUTEX_UNLOCK(m_tls_mutex) /**< Unlock module using mutex */
/**
* @brief This macro is used for developer debugging.
*
* @note Not enabled normally as too many logs result and this level of detail is needed
* less frequently.
*/
#define TLS_TRC(...)
/**@brief TLS interface. */
typedef struct
{
uint32_t transport_id; /**< Transport identifier provided by the application to map the TLS instance with associated transport. Set by the application on allocation. */
nrf_tls_output_t output_fn; /**< Output function registered by the application to write TLS data on the transport. */
app_fifo_t input_fifo; /**< Input FIFO used for queueing up data received from the transport. Data on the transport us*/
app_fifo_t output_fifo; /**< Output FIFO used for queueing up decrypted data received on the TLS interface. */
mbedtls_ssl_context context; /**< SSL context used by mBedTLS for managing the TLS instance. */
mbedtls_ssl_config conf; /**< Pointer to the configuration paramaters used for the instance. Memory is allocated on nrf_tls_alloc. */
#ifdef MBEDTLS_X509_CRT_PARSE_C
mbedtls_pk_context pkey; /**< Private key information. Used only when own certificate is provided. */
mbedtls_x509_crt * p_owncert; /**< Own parsed certificate. */
mbedtls_x509_crt * p_cacert; /**< CA's parsed certificate. */
#endif // MBEDTLS_X509_CRT_PARSE_C
/**@brief Timer management used to provide timeouts to the TLS library. */
uint32_t start_tick; /**< Indicator (in milliseconds) of when the timeout was requested. */
uint32_t intrmediate_delay; /**< Period indicating intermediate timeout period in milliseconds. */
uint32_t final_delay; /**< Final timeout period in milliseconds. */
} interface_t;
#ifdef MBEDTLS_X509_CRT_PARSE_C
/**@brief Input buffer size used for the input FIFO.
*
* @note For ECDHE-RSA, though the context length is set to a value smaller than 3072, a buffer size
* of 4k is needed for the cloud sends a certificate that does not fit the size.
* Also configuration of input FIFO is possible in powers of 2 therefore tuning this value to
* a smaller FIFO size to exactly the size of certificate size is not possible.
*/
#define INPUT_BUFFER_SIZE 4096
#endif // MBEDTLS_X509_CRT_PARSE_C
/**@brief Input buffer size when certificates are not used. */
#ifndef INPUT_BUFFER_SIZE
#define INPUT_BUFFER_SIZE MBEDTLS_SSL_MAX_CONTENT_LEN
#endif // INPUT_BUFFER_SIZE
/**@brief Output buffer size.
*
* @note Limiting to 1024 instead of MBEDTLS_SSL_MAX_CONTENT_LEN due to RAM constraints.
*/
#define OUTPUT_BUFFER_SIZE 1024
static interface_t * m_interface[NRF_TLS_MAX_INSTANCE_COUNT]; /**< Interface table to manage the interfaces. */
static uint8_t m_input_buffer[INPUT_BUFFER_SIZE * NRF_TLS_MAX_INSTANCE_COUNT]; /**< Input buffer that is statically reserved. */
SDK_MUTEX_DEFINE(m_tls_mutex) /**< Mutex variable. Currently unused, this declaration does not occupy any space in RAM. */
/**@brief Initializes the interface.
*
* @param[in] index Identifies instance in m_interface table to be initialized.
*/
static __INLINE void interface_init(uint32_t index)
{
m_interface[index] = NULL;
}
/**@brief Wrapper function to avoid GCC errors with incompatible parameters.
*
* @param[in] n Number of blocks to be allocated.
* @param[in] s Size of each block to be assigned.
*
* @retval Pointer to memory block if procedure succeeded.
* @retval NULL if procedure failed.
*/
static __INLINE void * wrapper_calloc(size_t n, size_t s)
{
return nrf_calloc(n,s);
}
/**@brief Frees an allocated interface instance.
*
* @param[in] p_instance Identifies the interface instance to be freed.
*/
static void interface_free(uint32_t index)
{
interface_t * const p_interface = m_interface[index];
if (p_interface != NULL)
{
nrf_free(p_interface->input_fifo.p_buf);
nrf_free(p_interface->output_fifo.p_buf);
#ifdef MBEDTLS_X509_CRT_PARSE_C
nrf_free(p_interface->p_cacert);
nrf_free(p_interface->p_owncert);
#endif // MBEDTLS_X509_CRT_PARSE_C
mbedtls_ssl_config_free(&p_interface->conf);
mbedtls_ssl_config_init(&p_interface->conf);
mbedtls_ssl_free(&p_interface->context);
nrf_free(p_interface);
}
interface_init(index);
}
/**@brief Allocates an interface instance.
*
* @param[inout] p_instance Provides transport identifier for the TLS instance.
* And if procedure was successful, will conatin allocated TLS instance identifier.
* @param[in] p_options TLS options to be used for the instance.
*
* @retval NRF_SUCCESS if the procedure was successful, else an error code indicating reason
( for failure.
*/
static uint32_t interface_alloc(nrf_tls_instance_t * p_instance,
nrf_tls_options_t const * p_options)
{
uint32_t index;
uint32_t err_code = NRF_TLS_NO_FREE_INSTANCE;
interface_t * p_interface = NULL;
TLS_ENTRY();
// Allocate memory for the TLS instance.
for (index = 0; index < NRF_TLS_MAX_INSTANCE_COUNT; index++)
{
if (m_interface[index] == NULL)
{
err_code = (NRF_ERROR_NO_MEM | IOT_TLS_ERR_BASE);
// Check if we have space to book keep the instance information.
p_interface = nrf_malloc(sizeof(interface_t));
m_interface[index] = p_interface;
break;
}
}
if ((index < NRF_TLS_MAX_INSTANCE_COUNT) && (p_interface != NULL))
{
// Initialize the memory holding the structure.
memset(p_interface, 0, sizeof(interface_t));
p_interface->output_fn = p_options->output_fn;
// Found free instance. Allocate memory for input and output queues.
uint8_t * p_input_memory = &m_input_buffer[INPUT_BUFFER_SIZE * index];
uint8_t * p_output_memory = (uint8_t *)nrf_malloc(OUTPUT_BUFFER_SIZE);
TLS_LOG("Input memory address %p", p_input_memory);
TLS_LOG("Output memory address %p", p_output_memory);
if (p_output_memory != NULL)
{
// Initialize the instance.
err_code = app_fifo_init(&p_interface->input_fifo,
p_input_memory,
INPUT_BUFFER_SIZE);
TLS_LOG("Input FIFO init result %08lx", err_code);
if (err_code == NRF_SUCCESS)
{
err_code = app_fifo_init(&p_interface->output_fifo,
p_output_memory,
OUTPUT_BUFFER_SIZE);
TLS_LOG("Output FIFO init result %08lx", err_code);
}
if (err_code == NRF_SUCCESS)
{
// All prerequisites for using the instance met.
// Procedure was successful.
p_interface->transport_id = p_instance->transport_id;
p_instance->instance_id = index;
}
else
{
err_code = (NRF_ERROR_INTERNAL | IOT_TLS_ERR_BASE);
}
}
if (err_code != NRF_SUCCESS)
{
TLS_ERR("Allocation failed - Initialization procedures.");
interface_free(index);
}
}
else
{
TLS_ERR("Allocation failed - Inadequate memory.");
}
return err_code;
}
/**@brief Transport read function registered with the TLS library.
*
* @details Data read on the transport is fed to the interface using the nrf_tls_input function.
* The TLS library requests the data based on state of SSL connection.
*
* @param[in] p_ctx Context registered with the library on creation of the TLS instance.
* @param[out] p_buffer Buffer where read data is fetched.
* @param[in] size Size to be read.
*
* @retval size of data read if procedure was successful.
* @retval MBEDTLS_ERR_SSL_CONN_EOF indicating there is not enough data received on the transport.
*/
static int interface_transport_read(void * p_ctx,
unsigned char * p_buffer,
size_t buffer_size)
{
uint32_t err_code;
uint32_t length = buffer_size;
interface_t * const p_interface = m_interface[(uint32_t)p_ctx];
uint32_t available_size = 0;
TLS_MUTEX_LOCK();
TLS_TRC("[%p]: interface_transport_read requested %08x",
p_interface,
buffer_size);
// Verify how much data is available in the queue.
err_code = app_fifo_read(&p_interface->input_fifo, NULL, &available_size);
TLS_TRC("[%p]: interface_transport_read, app_fifo_read result %ld",
p_interface,
err_code);
// For datagram connection, read all that is available.
// For stream sockets, read only if available data is at least as much as requested.
if (( (p_interface->conf.transport == MBEDTLS_SSL_TRANSPORT_DATAGRAM) &&
(available_size > 0) )||
( (p_interface->conf.transport == MBEDTLS_SSL_TRANSPORT_STREAM) &&
(available_size >= buffer_size)) )
{
TLS_TRC("[%p]: interface_transport_read requested 0x%08x, available %08lx.",
p_interface,
buffer_size,
available_size);
err_code = app_fifo_read(&p_interface->input_fifo, p_buffer, &length);
if (err_code == NRF_SUCCESS)
{
TLS_TRC("[%p]: interface_transport_read success, length 0x%08lx.",
p_interface,
length);
TLS_TRC("[NRF TLS]: ---------------- SSL Read data --------------");
TLS_DUMP(p_buffer, length);
TLS_TRC("[NRF TLS]: -------------------- End ------------------");
TLS_MUTEX_UNLOCK();
return length;
}
}
else
{
TLS_TRC("[%p]: interface_transport_read requested size 0x%08x, "
"available 0x%08lx.",
p_interface,
buffer_size,
available_size);
}
TLS_MUTEX_UNLOCK();
return MBEDTLS_ERR_SSL_CONN_EOF;
}
/**@brief Write function that the TLS library calls to write on the transport.
*
* @param[in] p_ctx Context registered with the library on creation of the TLS instance.
* @param[in] p_buf Buffer containing data to be written on the transport.
* @param[in] len Length of data to be written.
*
* @retval length of data written on the transport if the procedure was successful.
* @retval MBEDTLS_ERR_SSL_CONN_EOF in case the procedure failed.
*/
static int interface_transport_write(void * p_ctx,
const unsigned char * p_buf,
size_t len)
{
int op_len = len;
interface_t * const p_interface = m_interface[(uint32_t)p_ctx];
TLS_MUTEX_LOCK();
const nrf_tls_instance_t handle = {
.transport_id = p_interface->transport_id,
.instance_id = (uint32_t)p_ctx
};
TLS_TRC("[%p]: interface_transport_write requested 0x%08x",
p_interface, len);
TLS_MUTEX_UNLOCK();
uint32_t err_code = p_interface->output_fn(&handle, (uint8_t *)p_buf, len);
TLS_MUTEX_LOCK();
if (err_code != NRF_SUCCESS)
{
op_len = MBEDTLS_ERR_SSL_CONN_EOF;
}
TLS_MUTEX_UNLOCK();
return op_len;
}
/**
* @brief Random number generator registered with the TLS library to create random numbers
* when needed.
*
* @param[in] p_ctx Context registered with the library on creation of the TLS instance.
* @param[out] p_buffer Buffer where generated random vector is to be fetched.
* @param[in] size Requested size of the random vector.
*
* @retval 0 when procedure is successful.
*
* @note This loop is time critical when available is less than requested size.
*/
static int random_vector_generate(void * p_ctx,
unsigned char * p_buffer,
size_t size)
{
uint8_t available = 0;
ASSERT(size <= RNG_CONFIG_POOL_SIZE);
while (available < size)
{
nrf_drv_rng_bytes_available(&available);
TLS_TRC(">> random_vector_generate, requested 0x%08lx, available 0x%08x",
size,
available);
}
UNUSED_RETURN_VALUE(nrf_drv_rng_rand(p_buffer, size));
return 0;
}
/**@brief Routine called periodically to advance the SSL context state.
*
* @param[in] p_instance Provides transport identifier for the TLS instance.
*/
static void interface_continue(interface_t * p_interface)
{
uint8_t * data = nrf_malloc(OUTPUT_BUFFER_SIZE);
if (data != NULL)
{
int len;
TLS_MUTEX_UNLOCK();
len = mbedtls_ssl_read(&p_interface->context, &data[0], OUTPUT_BUFFER_SIZE);
TLS_MUTEX_LOCK();
TLS_TRC("[%p]: mbedtls_ssl_read result(len) 0x%08lx",
p_interface,
len);
if (len > 0)
{
uint32_t write_len = len;
uint32_t err_code = app_fifo_write(&p_interface->output_fifo, data, &write_len);
if (err_code != NRF_SUCCESS)
{
TLS_LOG("Failed to write decrypted data.");
}
}
nrf_free(data);
}
}
/**@brief Debug log funciton registered with the TLS library.
*
* @param[in] p_ctx Context registered with the library on creation of the TLS instance.
* @param[in] level Debug level of the log.
* @param[in] p_file File requesting the log.
* @param[in] line Line number in the file requesting the log.
* @param[in] p_str String containing the log message.
*/
static void mbedtls_log(void * p_ctx,
int level,
const char * p_file,
int line,
const char * p_str)
{
TLS_LOG("[%s]:[%d]: %s", &p_file[strlen(p_file)-12], line, p_str);
}
/**@brief Function registered with TLS library to set (start/stop) timer.
*
* @param[in] p_ctx Context registered with the library on creation of the TLS instance.
* @param[in] int_ms Intermediate timeout period in milliseconds.
* @param[in] fin_ms Finaly timout period in milliseconds.
* Value of zero indicates a request to stop the timer.
*/
static void tls_set_timer(void * p_ctx,
uint32_t int_ms,
uint32_t fin_ms)
{
TLS_MUTEX_LOCK();
interface_t * const p_interface = m_interface[(uint32_t)p_ctx];
if (fin_ms > 0)
{
TLS_TRC("[%p]: set_timer, start %d, final %d, intermediate %d",
p_interface,
p_interface->start_tick,
p_interface->final_delay,
p_interface->intrmediate_delay);
uint32_t err_code = iot_timer_wall_clock_get(&p_interface->start_tick);
if (err_code == NRF_SUCCESS)
{
p_interface->final_delay = fin_ms;
p_interface->intrmediate_delay = int_ms;
}
}
else
{
p_interface->start_tick = TIME_PERIOD_INVALID;
p_interface->final_delay = TIME_PERIOD_INVALID;
p_interface->intrmediate_delay = 0;
}
TLS_MUTEX_UNLOCK();
}
/**@brief Function registered with TLS library to get the status of the timer.
*
* @param[in] p_ctx Context registered with the library on creation of the TLS instance.
*
* @retval -1 if timer is cancelled
* @retval 0 if none of the delays is expired
* @retval 1 if the intermediate delay only is expired
* @retval 2 if the final delay is expired
*/
static int tls_get_timer(void * p_ctx)
{
int retval = 0;
TLS_MUTEX_LOCK();
iot_timer_time_in_ms_t elapsed_time;
interface_t * const p_interface = m_interface[(uint32_t)p_ctx];
uint32_t err_code = iot_timer_wall_clock_delta_get(&p_interface->start_tick, &elapsed_time);
TLS_TRC("[%p]: get_timer, start %d, final %d, intermediate %d, elapsed %d",
p_interface,
p_interface->start_tick,
p_interface->final_delay,
p_interface->intrmediate_delay,
elapsed_time);
if (err_code == NRF_SUCCESS)
{
if (p_interface->final_delay <= elapsed_time)
{
retval = 2;
}
else if (p_interface->intrmediate_delay <= elapsed_time)
{
retval = 1;
}
else if ((p_interface->intrmediate_delay == TIME_PERIOD_INVALID) &&
(p_interface->final_delay == TIME_PERIOD_INVALID))
{
retval = -1;
}
}
TLS_MUTEX_UNLOCK();
return retval;
}
/**@brief Prints/displays the configuration of the interface. Used for debugging purposes.
*
* @param[in] p_interface Identifies the instance whose ssl configuration is to be printed.
*/
static void interface_conf_debug_print(interface_t * p_interface)
{
TLS_TRC("[%p] SSL Conf", p_interface);
for (int i = 0; i < 4; i++)
{
TLS_TRC("\t Cipger Suites : %02d", i);
TLS_TRC("\t\t\tCiphersuite[0] = %02d", p_interface->conf.ciphersuite_list[i][0]);
TLS_TRC("\t\t\tCiphersuite[1] = %02d", p_interface->conf.ciphersuite_list[i][1]);
TLS_TRC("\t\t\tCiphersuite[2] = %02d", p_interface->conf.ciphersuite_list[i][2]);
TLS_TRC("\t\t\tCiphersuite[3] = %02d", p_interface->conf.ciphersuite_list[i][3]);
}
TLS_TRC("\t\tf_dbg = %p", p_interface->conf.f_dbg);
TLS_TRC("\t\tp_dbg = %p", p_interface->conf.p_dbg);
TLS_TRC("\t\tf_rng = %p", p_interface->conf.f_rng);
TLS_TRC("\t\tp_rng = %p", p_interface->conf.p_rng);
TLS_TRC("\t\tf_get_cache = %p", p_interface->conf.f_get_cache);
TLS_TRC("\t\tf_set_cache = %p", p_interface->conf.f_set_cache);
TLS_TRC("\t\tf_set_cache = %p", p_interface->conf.p_cache);
TLS_TRC("\t\tf_vrfy = %p", p_interface->conf.f_vrfy);
TLS_TRC("\t\tp_vrfy = %p", p_interface->conf.p_vrfy);
TLS_TRC("\t\tcert_profile = %p", p_interface->conf.cert_profile);
TLS_TRC("\t\tkey_cert = %p", p_interface->conf.key_cert);
TLS_TRC("\t\tca_chain = %p", p_interface->conf.ca_chain);
TLS_TRC("\t\tca_crl = %p", p_interface->conf.ca_crl);
TLS_TRC("\t\tmax_major_ver = %2d", p_interface->conf.max_major_ver);
TLS_TRC("\t\tmax_minor_ver = %2d", p_interface->conf.max_minor_ver);
TLS_TRC("\t\tmin_major_ver = %2d", p_interface->conf.min_major_ver);
TLS_TRC("\t\tmax_major_ver = %2d", p_interface->conf.max_major_ver);
}
/**@brief Sets up own certificate on the interface instance.
*
* @param[in] p_interface TLS interface instance for which the procedure is requested.
* @param[in] p_own Supplies own certifcate setup information.
*
* @retval NRF_SUCCESS if the procedure was successful, else an error code indicating reason for
* failure.
*/
static uint32_t own_certificate_set(interface_t * const p_interface,
nrf_tls_certificate_t const * p_own)
{
#ifdef MBEDTLS_X509_CRT_PARSE_C
uint32_t error_code = (NRF_ERROR_NO_MEM | IOT_TLS_ERR_BASE);
int result;
p_interface->p_owncert = nrf_malloc(sizeof(mbedtls_x509_crt));
if (p_interface->p_owncert)
{
mbedtls_x509_crt_init(p_interface->p_owncert);
result = mbedtls_x509_crt_parse(p_interface->p_owncert,
p_own->p_certificate,
p_own->certificate_len);
if (result == 0)
{
mbedtls_pk_init(&p_interface->pkey);
result = mbedtls_pk_parse_key(&p_interface->pkey,
p_own->p_private_key,
p_own->private_key_len,
NULL,
0 );
result = mbedtls_ssl_conf_own_cert(&p_interface->conf,
p_interface->p_owncert,
&p_interface->pkey);
if (result == 0)
{
error_code = NRF_SUCCESS;
}
else
{
error_code = NRF_TLS_OWN_CERT_SETUP_FAILED;
}
}
else
{
error_code = NRF_TLS_OWN_CERT_SETUP_FAILED;
}
}
return error_code;
#else
return NRF_SUCCESS;
#endif // MBEDTLS_X509_CRT_PARSE_C
}
/**@brief Sets up verification option for the interfce,
*
* @param[in] p_interface TLS interface instance for which the procedure is requested.
* @param[in] p_settings Key setting supplying CA PEM file.
*
* @retval NRF_SUCCESS if the procedure was successful, else an error code indicating reason for
* failure.
*/
static uint32_t verify_options_set(interface_t * const p_interface,
nrf_tls_key_settings_t const * p_settings)
{
uint32_t err_code = NRF_SUCCESS;
#ifdef MBEDTLS_X509_CRT_PARSE_C
if ((p_settings != NULL) && (p_settings->p_ca_cert_pem != NULL))
{
mbedtls_ssl_conf_authmode(&p_interface->conf, MBEDTLS_SSL_VERIFY_REQUIRED );
p_interface->p_cacert = nrf_malloc(sizeof(mbedtls_x509_crt));
if (p_interface->p_cacert != NULL)
{
// Initialize ca certificate.
mbedtls_x509_crt_init(p_interface->p_cacert);
int result = mbedtls_x509_crt_parse(p_interface->p_cacert,
p_settings->p_ca_cert_pem,
p_settings->ca_cert_pem_len);
if (result >= 0)
{
mbedtls_ssl_conf_ca_chain(&p_interface->conf, p_interface->p_cacert, NULL);
}
else
{
err_code = NRF_TLS_INVALID_CA_CERTIFICATE;
}
}
else
{
err_code = (NRF_ERROR_NO_MEM | IOT_TLS_ERR_BASE);
}
}
else
#endif // MBEDTLS_X509_CRT_PARSE_C
{
mbedtls_ssl_conf_authmode(&p_interface->conf, MBEDTLS_SSL_VERIFY_NONE);
}
return err_code;
}
/**@brief Sets up the configuration for SSL context according to the options specificed.
*
* @param[in] instance_id Identifies the TLS instance for which the procedure is requested.
* @param[in] p_options Supplies options to be used for the configuration.
*
* @retval NRF_SUCCESS if the procedure was successful, else an error indicating reason
* for failure.
*/
static uint32_t interface_conf_setup(uint32_t instance_id,
nrf_tls_options_t const * p_options)
{
int result;
interface_t * p_interface = m_interface[instance_id];
uint32_t err_code = NRF_TLS_CONFIGURATION_FAILED;
mbedtls_ssl_config_init(&p_interface->conf);
result = mbedtls_ssl_config_defaults(&p_interface->conf,
p_options->role,
p_options->transport_type,
MBEDTLS_SSL_PRESET_DEFAULT);
mbedtls_ssl_conf_rng(&p_interface->conf, random_vector_generate, NULL);
mbedtls_ssl_conf_dbg(&p_interface->conf, mbedtls_log, NULL);
TLS_TRC("[%p]: mbedtls_ssl_config_defaults result %08lx", p_interface, result);
#ifdef MBEDTLS_KEY_EXCHANGE_PSK_ENABLED
if (result == 0)
{
if ((p_options->p_key_settings != NULL) && (p_options->p_key_settings->p_psk != NULL))
{
result = mbedtls_ssl_conf_psk(&p_interface->conf,
p_options->p_key_settings->p_psk->p_secret_key,
p_options->p_key_settings->p_psk->secret_key_len,
p_options->p_key_settings->p_psk->p_identity,
p_options->p_key_settings->p_psk->identity_len);
}
}
#endif // MBEDTLS_KEY_EXCHANGE_PSK_ENABLED
if (result == 0)
{
if (p_options->p_key_settings->p_own_certificate != NULL)
{
err_code = own_certificate_set(p_interface,
p_options->p_key_settings->p_own_certificate);
}
else
{
err_code = NRF_SUCCESS;
}
}
if (err_code == NRF_SUCCESS)
{
err_code = verify_options_set(p_interface, p_options->p_key_settings);
}
#ifdef MBEDTLS_SSL_PROTO_DTLS
if (err_code == NRF_SUCCESS)
{
if (p_interface->conf.transport == MBEDTLS_SSL_TRANSPORT_DATAGRAM)
{
mbedtls_ssl_conf_min_version(&p_interface->conf,
MBEDTLS_SSL_MAJOR_VERSION_3,
MBEDTLS_SSL_MINOR_VERSION_3);
mbedtls_ssl_conf_max_version(&p_interface->conf,
MBEDTLS_SSL_MAJOR_VERSION_3,
MBEDTLS_SSL_MINOR_VERSION_3);
if (p_options->transport_type == MBEDTLS_SSL_TRANSPORT_DATAGRAM)
{
mbedtls_ssl_conf_handshake_timeout(&p_interface->conf,
(MBEDTLS_SSL_DTLS_TIMEOUT_DFL_MIN * 2),
(MBEDTLS_SSL_DTLS_TIMEOUT_DFL_MIN * 2));
}
}
}
#endif // MBEDTLS_SSL_PROTO_DTLS
interface_conf_debug_print(p_interface);
return err_code;
}
/**@brief Sets up the SSL context according to the options specificed.
*
* @param[in] instance_id Identifies the TLS instance for which the procedure is requested.
*
* @retval NRF_SUCCESS if the procedure was successful, else an error indicating reason for
* failure.
*
* @note For client roles, handshake prcoedure is initiated here.
*/
static uint32_t interface_ssl_context_setup(uint32_t instance_id)
{
int result;
interface_t * p_interface = m_interface[instance_id];
TLS_TRC("[%p]: Major number: 0x%08lx Minor number: 0x%08lx",
p_interface->conf,
p_interface->conf.min_major_ver,
p_interface->conf.min_minor_ver);
mbedtls_ssl_init(&p_interface->context);
result = mbedtls_ssl_setup(&p_interface->context, &p_interface->conf);
TLS_LOG("mbedtls_ssl_setup result %d",result);
if (result == 0)
{
//ssl_set_ciphersuites(&p_interface->context, default_ciphers);
mbedtls_ssl_set_bio(&p_interface->context,
(void *)instance_id,
interface_transport_write,
interface_transport_read,
NULL);
if (p_interface->conf.transport == MBEDTLS_SSL_TRANSPORT_DATAGRAM)
{
mbedtls_ssl_set_timer_cb(&p_interface->context,
(void *)instance_id,
tls_set_timer,
tls_get_timer);
}
TLS_MUTEX_UNLOCK();
result = mbedtls_ssl_handshake(&p_interface->context);
TLS_MUTEX_LOCK();
TLS_LOG("mbedtls_ssl_handshake result %d", result);
if (result == MBEDTLS_ERR_SSL_CONN_EOF)
{
result = 0;
}
}
return (result ? (NRF_ERROR_INTERNAL | IOT_TLS_ERR_BASE) : NRF_SUCCESS);
}
uint32_t nrf_tls_init(void)
{
uint32_t index = 0;
SDK_MUTEX_INIT(m_tls_mutex);
for (index = 0; index < NRF_TLS_MAX_INSTANCE_COUNT; index++)
{
interface_init(index);
}
UNUSED_RETURN_VALUE(mbedtls_platform_set_calloc_free(wrapper_calloc, nrf_free));
#ifdef MBEDTLS_DEBUG_C
mbedtls_debug_set_threshold(2);
#endif // MBEDTLS_DEBUG_C
UNUSED_RETURN_VALUE(nrf_drv_rng_init(NULL));
return NRF_SUCCESS;
}
uint32_t nrf_tls_alloc(nrf_tls_instance_t * p_instance,
nrf_tls_options_t const * p_options)
{
uint32_t err_code = (NRF_ERROR_NO_MEM | IOT_TLS_ERR_BASE);
TLS_MUTEX_LOCK();
err_code = interface_alloc(p_instance, p_options);
if (err_code == NRF_SUCCESS)
{
err_code = interface_conf_setup(p_instance->instance_id, p_options);
}
if (err_code == NRF_SUCCESS)
{
err_code = interface_ssl_context_setup(p_instance->instance_id);
}
if (err_code != NRF_SUCCESS)
{
interface_free(p_instance->instance_id);
}
TLS_MUTEX_UNLOCK();
return err_code;
}
uint32_t nrf_tls_input(nrf_tls_instance_t const * p_instance,
uint8_t const * p_data,
uint32_t datalen)
{
uint32_t actual_size = 0;
uint32_t err_code = (NRF_ERROR_NOT_FOUND | IOT_TLS_ERR_BASE);
TLS_MUTEX_LOCK();
if ((p_instance->instance_id < NRF_TLS_MAX_INSTANCE_COUNT) &&
(m_interface[p_instance->instance_id] != NULL))
{
interface_t * const p_interface = m_interface[p_instance->instance_id];
// Verify all data can be queued in the FIFO.
err_code = app_fifo_write(&p_interface->input_fifo, NULL, &actual_size);
if (err_code == NRF_SUCCESS)
{
// Avoid partial write.
if (datalen <= actual_size)
{
actual_size = datalen;
err_code = app_fifo_write(&p_interface->input_fifo, p_data, &actual_size);
TLS_TRC("[%p]: >> nrf_tls_input datalen 0x%08lx result 0x%08lx",
p_interface,
datalen,
err_code);
}
else
{
TLS_LOG("[%p]: Failed to queue input. "
"Available 0x%08lx, requested 0x%08lx",
p_interface,
actual_size,
datalen);
}
interface_continue(p_interface);
}
else
{
// Not enough room in the FIFO, indicate error.
err_code = (NRF_ERROR_NO_MEM | IOT_TLS_ERR_BASE);
}
}
TLS_MUTEX_UNLOCK();
return err_code;
}
uint32_t nrf_tls_read(nrf_tls_instance_t const * p_instance,
uint8_t * p_data,
uint32_t * p_datalen)
{
uint32_t err_code = (NRF_ERROR_NOT_FOUND | IOT_TLS_ERR_BASE);
TLS_MUTEX_LOCK();
if ((p_instance->instance_id < NRF_TLS_MAX_INSTANCE_COUNT) &&
(m_interface[p_instance->instance_id] != NULL))
{
interface_t * const p_interface = m_interface[p_instance->instance_id];
err_code = app_fifo_read(&p_interface->output_fifo, p_data, p_datalen);
}
TLS_MUTEX_UNLOCK();
return err_code;
}
uint32_t nrf_tls_write(nrf_tls_instance_t const * p_instance,
uint8_t const * p_data,
uint32_t * p_datalen)
{
uint32_t err_code = (NRF_ERROR_NOT_FOUND | IOT_TLS_ERR_BASE);
TLS_MUTEX_LOCK();
if ((p_instance->instance_id < NRF_TLS_MAX_INSTANCE_COUNT) &&
(m_interface[p_instance->instance_id] != NULL))
{
interface_t * const p_interface = m_interface[p_instance->instance_id];
int actual_len = (*p_datalen);
TLS_MUTEX_UNLOCK();
actual_len = mbedtls_ssl_write(&p_interface->context, p_data, actual_len);
TLS_MUTEX_LOCK();
if (actual_len < 0)
{
err_code = (NRF_ERROR_INTERNAL | IOT_TLS_ERR_BASE);
if (actual_len == MBEDTLS_ERR_SSL_CONN_EOF)
{
if (p_interface->context.state < MBEDTLS_SSL_HANDSHAKE_OVER)
{
err_code = NRF_TLS_HANDSHAKE_IN_PROGRESS;
}
}
}
else
{
(* p_datalen) = actual_len;
err_code = NRF_SUCCESS;
}
}
TLS_MUTEX_UNLOCK();
return err_code;
}
uint32_t nrf_tls_free(nrf_tls_instance_t const * p_instance)
{
uint32_t err_code = (NRF_ERROR_NOT_FOUND | IOT_TLS_ERR_BASE);
TLS_MUTEX_LOCK();
if ((p_instance->instance_id < NRF_TLS_MAX_INSTANCE_COUNT) &&
(m_interface[p_instance->instance_id] != NULL))
{
interface_free(p_instance->instance_id);
err_code = NRF_SUCCESS;
}
TLS_MUTEX_UNLOCK();
return err_code;
}
void nrf_tls_process(void)
{
uint32_t index;
TLS_MUTEX_LOCK();
for (index = 0; index < NRF_TLS_MAX_INSTANCE_COUNT; index++)
{
if (m_interface[index] != NULL)
{
interface_continue(m_interface[index]);
}
}
TLS_MUTEX_UNLOCK();
}