xiaozhengsheng 6df0f7d96e 初始版本
2025-08-19 09:49:41 +08:00

1149 lines
35 KiB
C

/**
* Copyright (c) 2009 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
* @file
* @brief Implementation of Gazell Pairing Library (gzp), Device functions.
* @defgroup gzp_source_device Gazell Pairing Device implementation.
* @{
* @ingroup gzp_04_source
*/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include "nrf_gzll.h"
#include "nrf_gzp.h"
#include "nrf_delay.h"
#include "nrf_nvmc.h"
#define SOURCE_FILE NRF_SOURCE_FILE_GZP_DEVICE ///< File identifer for asserts.
/******************************************************************************/
/** @name Misc. defines
* @{ */
/******************************************************************************/
#define GZP_PARAMS_DB_ELEMENT_SYSTEM_ADDRESS 0 ///< System address position.
#define GZP_PARAMS_DB_ELEMENT_HOST_ID (GZP_PARAMS_DB_ELEMENT_SYSTEM_ADDRESS + GZP_SYSTEM_ADDRESS_WIDTH) ///< Host ID position
#define GZP_PARAMS_DB_ELEMENT_SIZE (GZP_SYSTEM_ADDRESS_WIDTH + GZP_HOST_ID_LENGTH)///< Total size
#define GZP_PARAMS_DB_MAX_ENTRIES 14 ///< Maximum allowed entries in the database.
/** @} */
/******************************************************************************/
/** @name Derived parameters
* @{ */
/******************************************************************************/
//lint -esym(40, GZP_PARAMS_STORAGE_ADR) "Undeclare identifier"
#define GZP_PARAMS_DB_ADR GZP_PARAMS_STORAGE_ADR ///<
#define GZP_PARAMS_DB_SIZE (GZP_PARAMS_DB_MAX_ENTRIES * GZP_PARAMS_DB_ELEMENT_SIZE) ///<
#define GZP_INDEX_DB_ADR (GZP_PARAMS_STORAGE_ADR + GZP_PARAMS_DB_SIZE) ///<
#define GZP_INDEX_DB_SIZE (GZP_DEVICE_PARAMS_STORAGE_SIZE - GZP_PARAMS_DB_SIZE) ///<
#if (GZP_DEVICE_PARAMS_STORAGE_SIZE < GZP_PARAMS_DB_SIZE)
#error GZP_DEVICE_PARAMS_STORAGE_SIZE must be greater or equal to GZP_PAIRING_PARAMS_DB_SIZE
#elif (GZP_DEVICE_PARAMS_STORAGE_SIZE == GZP_PARAMS_DB_SIZE )
#warning GZP_DEVICE_PARAMS_STORAGE_SIZE to low to be able store any pairing parameters NV memory
#endif
/** @} */
/******************************************************************************/
/** @name Typedefs
* @{ */
/******************************************************************************/
/**
* Possible return values for the function gzp_tx_rx_transaction()
*/
typedef enum
{
GZP_TX_RX_SUCCESS, ///< ACK received. Transaction successful.
GZP_TX_RX_FAILED_TO_SEND, ///<
GZP_TX_RX_NO_RESPONSE ///<
} gzp_tx_rx_trans_result_t;
/** @} */
/******************************************************************************/
/** @name Internal variables
* @{ */
/******************************************************************************/
static uint8_t gzp_system_address[GZP_SYSTEM_ADDRESS_WIDTH]; ///<
static uint8_t gzp_host_id[GZP_HOST_ID_LENGTH]; ///<
static uint8_t dyn_key[GZP_DYN_KEY_LENGTH];
static bool gzp_id_req_pending = false;
/** @} */
/******************************************************************************/
/** @name Internal (static) function prototypes
* @{ */
/******************************************************************************/
/**
* Function for sending an encrypted packet.
*
* The function waits for the transmission to complete.
*
* @param tx_packet Pointer to the packet to be sent.
* @param length Length of the packet to be sent.
* @param pipe Pipe on which the packet should be sent.
*
* @retval true If the transmission succeeded.
* @retval false If the transmission failed (timed out).
*/
static bool gzp_tx_packet(const uint8_t* tx_packet, uint8_t length, uint8_t pipe);
/**
* Function sending the packet *tx_packet and a subsequent packet fetching the response
* to *tx_packet.
*
* @param tx_packet is a pointer to the packet to be sent.
* @param tx_length is the length of the packet to be sent.
* @param rx_dst is a pointer to where the received response packet should be stored.
* @param rx_length is a pointer to where the length of the received packet should be stored.
* @param pipe is the pipe on which the packet should be sent.
*
* @return result of the transaction.
*/
static gzp_tx_rx_trans_result_t gzp_tx_rx_transaction(const uint8_t *tx_packet, uint8_t tx_length, uint8_t *rx_dst, uint32_t *rx_length, uint8_t pipe);
/**
* Function for sending an encrypted packet. The function detects whether the correct
* key was used, and attempts to send a "key update" to the host if the wrong key was being
* used.
* @param tx_packet is a pointer to the packet to be sent.
* @param length is the length of the packet to be sent.
* @retval true if transmission succeeded and packet was decrypted correctly by host.
* @retval false if transmission failed or packet was not decrypted correctly by host.
*/
static bool gzp_crypt_tx_transaction(const uint8_t *tx_packet, uint8_t length);
/**
* Function updateing the "dynamic key" and sending a "key update" to the host.
*
* @retval true if key update succeeded.
* @retval false if if key update failed.
*/
static bool gzp_key_update(void);
/**
* Function for adding an element to "parameters data base" in non volatile (NV) memory. An element is
* GZP_PARAMS_ELEMENT_SYSTEM_ADDRESS bytes long, holding the "system address" and "host ID".
*
* The "parameters data base" can store up to GZP_DEVICE_PAIRING_PARAMS_DB_MAX_ENTRIES
* elements.
*
* @param src_element is a pointer to the element.
* @param index is a number between 0 and (GZP_PARAMS_DB_MAX_ENTRIES - 1)
* selecting the location in which the element will be stored.
*/
static void gzp_params_db_add(const uint8_t *src_element, uint8_t index);
/**
* Function for reading an element from "parameters data base" in non volatile (NV) memory. An element is
* GZP_PARAMS_ELEMENT_SYSTEM_ADDRESS bytes long, holding the "system address" and "host ID".
*
* @param dst_element is a pointer where the read element should be stored.
* @param index is a number between 0 and (GZP_PARAMS_DB_MAX_ENTRIES - 1).
* selecting the location that should be read.
*/
static void gzp_params_db_read(uint8_t* dst_element, uint8_t index);
/**
* Function for writing an index to the "index data base" in non volatile (NV) memory.
*
* @param index is the index to be written to the data base.
*/
static void gzp_index_db_add(uint8_t index);
/**
* Function for reading the index previously written to the "index data base" in NV memory.
*
* @return
*/
static uint8_t gzp_index_db_read(void);
/**
* Check "index data base" is full.
*
* @retval true
* @retval false
*/
static bool gzp_index_db_full(void);
/**
* Function returning @b true if the "index data base" is empty.
*
* @retval true
* @retval false
*/
static bool gzp_index_db_empty(void);
/**
* Function returning @b true if array contains only 1s (0xff).
*
* @param *src is a pointer to the array to be evaluated.
* @param length is the length of the array to be evaluated.
*
* @retval true
* @retval false
*/
static bool gzp_array_is_set(const uint8_t* src, uint8_t length);
/**
* Function for storing the current "system address" and "host ID" in NV memory.
*
* @param store_all selects whether only "system address" or both "system address" and
* "host ID" should be stored.
* @arg true selects that both should be stored.
* @arg false selects that only "system address" should be stored.
*
* @retval true
* @retval false
*/
static bool gzp_params_store(bool store_all);
/**
* Restore the "system address" and "host ID" from NV memory.
* @retval true
* @retval false
*/
static bool gzp_params_restore(void);
/**
* Delay function. Will add a delay equal to GZLL_RX_PERIOD * rx_periods [us].
*
* @param rx_periods
*/
void gzp_delay_rx_periods(uint32_t rx_periods);
/**
* Delay function. Will add a delay equal to GZLL_RX_PERIOD * rx_periods [us] using the
* gazell timer and not a delay loop.
*
* @param rx_periods
*/
void gzp_tick_sleep_rx_periods(uint32_t rx_periods);
/*
* Print debug string. By default does nothing.
*
* If GZP_DEBUG is defined then the print string function is required to
* be implemented.
*/
void print_string(char* p_expr);
/** @} */
/******************************************************************************/
/** @name Internal (static) variables
* @{ */
/******************************************************************************/
static nrf_gzll_device_tx_info_t latest_tx_info; ///< Information about the last TX attempt, e.g. RSSI of ACK.
static volatile bool tx_complete; ///< Flag to indicate whether a GZLL TX attempt has completed.
static bool tx_success; ///< Flag to indicate whether a GZLL TX attempt was successful.
// Define Macro to make array initialization nicer
#define REP4(X) X X X X
#if defined(__ICCARM__)
#if GZP_PARAMS_DB_ADR == 0x1000
static const uint32_t database[GZP_DEVICE_PARAMS_STORAGE_SIZE/4] @ "gzp_dev_data"
#elif GZP_PARAMS_DB_ADR == 0x15000
static const uint32_t database[GZP_DEVICE_PARAMS_STORAGE_SIZE/4] @ "gzp_dev_data_sd"
#else
#error
#endif
#elif defined(__GNUC__)
static const uint32_t database[GZP_DEVICE_PARAMS_STORAGE_SIZE / 4] __attribute__((section(".gzll_paring")))
#else
static const uint32_t database[GZP_DEVICE_PARAMS_STORAGE_SIZE / 4] __attribute__((at(GZP_PARAMS_DB_ADR)))
#endif
= {
#define STATIC_INIT_VALUE 0xFFFFFFFF
#define STATIC_INIT_COUNT (GZP_DEVICE_PARAMS_STORAGE_SIZE / 4)
#define INIT_1 STATIC_INIT_VALUE,
#define INIT_4 REP4(INIT_1)
#define INIT_16 REP4(INIT_4)
#define INIT_64 REP4(INIT_16)
#define INIT_256 REP4(INIT_64)
#define INIT_1024 REP4(INIT_256)
#if (STATIC_INIT_COUNT == 256)
INIT_256
#elif (STATIC_INIT_COUNT == 1024)
INIT_1024
#else
#error Gazell Pairing Library database not initialized properly!
#endif
}; ///< Database for storing keys.
/** @} */
/******************************************************************************/
// Implementation: Device-specific API functions
/******************************************************************************/
void gzp_init()
{
gzp_id_req_pending = false;
#ifndef GZP_NV_STORAGE_DISABLE
(void)gzp_params_restore();
#endif
// Update radio parameters from gzp_system_address
(void)gzp_update_radio_params(gzp_system_address);
}
void gzp_erase_pairing_data(void)
{
// Erase database flash page so that it can be later written to.
nrf_nvmc_page_erase((uint32_t)database);
}
bool gzp_address_req_send()
{
//lint -save -e514 Unusual use of a Boolean expression (gzll_update_ok &= ...)
uint8_t i;
bool retval = false;
bool success;
uint8_t address_req[GZP_CMD_HOST_ADDRESS_REQ_PAYLOAD_LENGTH];
uint8_t rx_payload[NRF_GZLL_CONST_MAX_PAYLOAD_LENGTH];
uint32_t rx_payload_length = NRF_GZLL_CONST_MAX_PAYLOAD_LENGTH;
nrf_gzll_tx_power_t temp_power;
uint32_t temp_max_tx_attempts;
bool gzll_update_ok = true;
// Store parameters that are temporarily changed
temp_max_tx_attempts = nrf_gzll_get_max_tx_attempts();
temp_power = nrf_gzll_get_tx_power();
// Modify parameters
nrf_gzp_disable_gzll();
nrf_gzll_set_max_tx_attempts(GZP_REQ_TX_TIMEOUT);
gzll_update_ok &= nrf_gzll_set_tx_power(GZP_POWER);
// Flush RX FIFO
gzll_update_ok &= nrf_gzll_flush_rx_fifo(GZP_PAIRING_PIPE);
gzll_update_ok &= nrf_gzll_enable();
// Build "request" packet
address_req[0] = (uint8_t)GZP_CMD_HOST_ADDRESS_REQ;
// Send a number of packets in order to broadcast that devices not within
// close proximity must back off.
for (i = 0; i < GZP_MAX_BACKOFF_PACKETS; i++)
{
success = gzp_tx_packet(address_req, GZP_CMD_HOST_ADDRESS_REQ_PAYLOAD_LENGTH, GZP_PAIRING_PIPE);
if (success)
{
nrf_gzp_flush_rx_fifo(GZP_PAIRING_PIPE);
}
else
{
break;
}
}
gzp_delay_rx_periods(GZP_TX_ACK_WAIT_TIMEOUT);
// Send message for fetching pairing response from host.
address_req[0] = (uint8_t)GZP_CMD_HOST_ADDRESS_FETCH;
success = gzp_tx_packet(address_req, GZP_CMD_HOST_ADDRESS_REQ_PAYLOAD_LENGTH, GZP_PAIRING_PIPE);
if (success && latest_tx_info.payload_received_in_ack)
{
// If pairing response received
if (nrf_gzll_get_rx_fifo_packet_count(GZP_PAIRING_PIPE) > 0)
{
rx_payload_length = NRF_GZLL_CONST_MAX_PAYLOAD_LENGTH; //dummy placeholder
if (nrf_gzll_fetch_packet_from_rx_fifo(GZP_PAIRING_PIPE, rx_payload, &rx_payload_length))
{
if (rx_payload[0] == (uint8_t)GZP_CMD_HOST_ADDRESS_RESP)
{
memcpy(gzp_system_address, &rx_payload[GZP_CMD_HOST_ADDRESS_RESP_ADDRESS], GZP_SYSTEM_ADDRESS_WIDTH);
gzll_update_ok &= gzp_update_radio_params(&rx_payload[GZP_CMD_HOST_ADDRESS_RESP_ADDRESS]);
#ifndef GZP_NV_STORAGE_DISABLE
(void)gzp_params_store(false); // "False" indicates that only "system address" part of DB element will be stored
#endif
retval = true;
}
}
}
}
else
{
gzp_delay_rx_periods(GZP_NOT_PROXIMITY_BACKOFF_RX_TIMEOUT - GZP_TX_ACK_WAIT_TIMEOUT);
}
gzp_delay_rx_periods(GZP_STEP1_RX_TIMEOUT);
// Clean-up and restore parameters temporarily modified
nrf_gzp_disable_gzll();
gzll_update_ok &= nrf_gzll_flush_rx_fifo(GZP_PAIRING_PIPE);
gzll_update_ok &= nrf_gzll_flush_tx_fifo(GZP_PAIRING_PIPE);
nrf_gzll_set_max_tx_attempts(temp_max_tx_attempts);
gzll_update_ok &= nrf_gzll_set_tx_power(temp_power);
gzll_update_ok &= nrf_gzll_enable();
if (!gzll_update_ok)
{
/*
The update of the Gazell parameters failed. Use nrf_gzll_get_error_code()
to investigate the cause.
*/
}
return retval;
//lint -restore
}
#ifndef GZP_CRYPT_DISABLE
gzp_id_req_res_t gzp_id_req_send()
{
uint8_t tx_packet[GZP_CMD_HOST_ID_REQ_PAYLOAD_LENGTH];
uint8_t rx_packet[GZP_MAX_ACK_PAYLOAD_LENGTH];
gzp_tx_rx_trans_result_t trans_result;
// If no ID request is pending, send new "ID request"
if (!gzp_id_req_pending)
{
// Build "Host ID request packet"
tx_packet[0] = (uint8_t)GZP_CMD_HOST_ID_REQ;
// Generate new session token
gzp_random_numbers_generate(&tx_packet[GZP_CMD_HOST_ID_REQ_SESSION_TOKEN], GZP_SESSION_TOKEN_LENGTH);
// Send "Host ID request"
if (gzp_tx_packet(tx_packet, GZP_CMD_HOST_ID_REQ_PAYLOAD_LENGTH, GZP_DATA_PIPE))
{
// Update session token if "Host ID request" was successfully transmitted
gzp_crypt_set_session_token(&tx_packet[GZP_CMD_HOST_ID_REQ_SESSION_TOKEN]);
gzp_id_req_pending = true;
return GZP_ID_RESP_PENDING;
}
}
else // If "ID request is pending" send "fetch ID" packet
{
// Build "host ID fetch" packet
tx_packet[0] = (uint8_t)GZP_CMD_HOST_ID_FETCH;
gzp_add_validation_id(&tx_packet[GZP_CMD_HOST_ID_FETCH_VALIDATION_ID]);
// Encrypt "host ID fetch" packet
gzp_crypt_select_key(GZP_ID_EXCHANGE);
gzp_crypt(&tx_packet[1], &tx_packet[1], GZP_CMD_HOST_ID_FETCH_PAYLOAD_LENGTH - 1);
trans_result = gzp_tx_rx_transaction(tx_packet, GZP_CMD_HOST_ID_FETCH_PAYLOAD_LENGTH, rx_packet, NULL, GZP_DATA_PIPE);
// If packet was successfully sent AND a response packet was received
if (trans_result == GZP_TX_RX_SUCCESS)
{
// Validate response packet
if (rx_packet[0] == (uint8_t)GZP_CMD_HOST_ID_FETCH_RESP)
{
gzp_crypt(&rx_packet[1], &rx_packet[1], GZP_CMD_HOST_ID_FETCH_RESP_PAYLOAD_LENGTH - 1);
if (gzp_validate_id(&rx_packet[GZP_CMD_HOST_ID_FETCH_RESP_VALIDATION_ID]))
{
switch (rx_packet[GZP_CMD_HOST_ID_FETCH_RESP_STATUS])
{
case GZP_ID_RESP_PENDING:
break;
case GZP_ID_RESP_REJECTED:
gzp_id_req_pending = false;
break;
case GZP_ID_RESP_GRANTED:
gzp_set_host_id(&rx_packet[GZP_CMD_HOST_ID_FETCH_RESP_HOST_ID]);
gzp_random_numbers_generate(dyn_key, GZP_DYN_KEY_LENGTH);
gzp_crypt_set_dyn_key(dyn_key);
#ifndef GZP_NV_STORAGE_DISABLE
(void)gzp_params_store(true);
#endif
gzp_id_req_pending = false;
break;
default:
break;
}
return (gzp_id_req_res_t)rx_packet[GZP_CMD_HOST_ID_FETCH_RESP_STATUS];
}
else
{
gzp_id_req_pending = false;
return GZP_ID_RESP_REJECTED;
}
}
}
}
gzp_id_req_pending = false;
return GZP_ID_RESP_FAILED;
}
void gzp_id_req_cancel()
{
gzp_id_req_pending = false;
}
bool gzp_crypt_data_send(const uint8_t *src, uint8_t length)
{
if (length <= GZP_ENCRYPTED_USER_DATA_MAX_LENGTH)
{
if (gzp_crypt_tx_transaction(src, length))
{
return true;
}
else
{
//print_string("GZP_CRYPT_TX failed\r\n");
// Attempt key update if user data transmission failed
// during normal operation (!gzp_id_req_pending)
if (!gzp_id_req_pending)
{
//print_string("KEY UPDATE\r\n");
if (gzp_key_update())
{
return gzp_crypt_tx_transaction(src, length);
}
}
return false;
}
}
else
{
return false;
}
}
#endif
/** @} */
/******************************************************************************/
// Implementation: Internal (static) functions
/******************************************************************************/
static bool gzp_tx_packet(const uint8_t* tx_packet, uint8_t length, uint8_t pipe)
{
tx_complete = false;
tx_success = false;
if (nrf_gzll_add_packet_to_tx_fifo(pipe,(uint8_t *)tx_packet, length))
{
while (tx_complete == false)
{
__WFI();
}
return tx_success;
}
else
{
return false;
}
}
static gzp_tx_rx_trans_result_t gzp_tx_rx_transaction(const uint8_t *tx_packet, uint8_t tx_length, uint8_t *rx_dst, uint32_t *rx_length, uint8_t pipe)
{
gzp_tx_rx_trans_result_t retval;
uint8_t fetch_packet[GZP_CMD_FETCH_RESP_PAYLOAD_LENGTH];
bool tx_packet_success;
bool fetch_success;
uint32_t local_rx_length = GZP_MAX_ACK_PAYLOAD_LENGTH;
uint32_t temp_lifetime;
nrf_gzp_flush_rx_fifo(pipe);
retval = GZP_TX_RX_FAILED_TO_SEND;
(void)nrf_gzll_disable();
while (nrf_gzll_is_enabled())
{}
temp_lifetime = nrf_gzll_get_sync_lifetime();
(void)nrf_gzll_set_sync_lifetime(GZP_TX_RX_TRANS_DELAY * 3); // 3 = RXPERIOD * 2 + margin
(void)nrf_gzll_enable();
tx_packet_success = gzp_tx_packet(tx_packet, tx_length, pipe);
if (tx_packet_success)
{
retval = GZP_TX_RX_NO_RESPONSE;
nrf_gzp_flush_rx_fifo(pipe);
fetch_packet[0] = (uint8_t)GZP_CMD_FETCH_RESP;
gzp_tick_sleep_rx_periods(GZP_TX_RX_TRANS_DELAY);
tx_packet_success = gzp_tx_packet(fetch_packet, GZP_CMD_FETCH_RESP_PAYLOAD_LENGTH, pipe);
if (tx_packet_success)
{
if (nrf_gzll_get_rx_fifo_packet_count(pipe))
{
local_rx_length = NRF_GZLL_CONST_MAX_PAYLOAD_LENGTH;
fetch_success = nrf_gzll_fetch_packet_from_rx_fifo(pipe, rx_dst, &local_rx_length);
}
else
{
fetch_success = false;
}
if (fetch_success)
{
retval = GZP_TX_RX_SUCCESS;
}
else
{
//print_string("GZP_TX_FETCH_FAILED\r\n");
}
}
else
{
//print_string("GZP_TX_FETCH_NO_ACK\r\n");
}
}
(void)nrf_gzll_disable();
while (nrf_gzll_is_enabled())
{}
(void)nrf_gzll_set_sync_lifetime(temp_lifetime);
(void)nrf_gzll_enable();
return retval;
}
#ifndef GZP_CRYPT_DISABLE
static bool gzp_crypt_tx_transaction(const uint8_t *src, uint8_t length)
{
uint8_t tx_packet[GZP_MAX_FW_PAYLOAD_LENGTH];
uint8_t rx_packet[GZP_MAX_ACK_PAYLOAD_LENGTH];
uint8_t tx_packet_length;
gzp_tx_rx_trans_result_t result;
tx_packet_length = length + (uint8_t)GZP_ENCRYPTED_USER_DATA_PACKET_OVERHEAD;
// Assemble tx packet
tx_packet[0] = (uint8_t)GZP_CMD_ENCRYPTED_USER_DATA;
gzp_add_validation_id(&tx_packet[GZP_CMD_ENCRYPTED_USER_DATA_VALIDATION_ID]);
memcpy(&tx_packet[GZP_CMD_ENCRYPTED_USER_DATA_PAYLOAD], (uint8_t*)src, length);
// Encrypt tx packet
if (gzp_id_req_pending)
{
gzp_crypt_select_key(GZP_ID_EXCHANGE);
}
else
{
gzp_crypt_select_key(GZP_DATA_EXCHANGE);
}
gzp_crypt(&tx_packet[1], &tx_packet[1], tx_packet_length - 1);
// If packet was successfully sent AND a response packet was received
result = gzp_tx_rx_transaction(tx_packet, tx_packet_length, rx_packet, NULL, GZP_DATA_PIPE);
if (result == GZP_TX_RX_SUCCESS)
{
if (rx_packet[0] == (uint8_t)GZP_CMD_ENCRYPTED_USER_DATA_RESP)
{
gzp_crypt(&rx_packet[GZP_CMD_ENCRYPTED_USER_DATA_RESP_VALIDATION_ID], &rx_packet[GZP_CMD_ENCRYPTED_USER_DATA_RESP_VALIDATION_ID], GZP_VALIDATION_ID_LENGTH);
// Validate response in order to know whether packet was correctly decrypted by host
if (gzp_validate_id(&rx_packet[GZP_CMD_ENCRYPTED_USER_DATA_RESP_VALIDATION_ID]))
{
// Update session token if normal operation (!gzp_id_req_pending)
if (!gzp_id_req_pending)
{
gzp_crypt_set_session_token(&rx_packet[GZP_CMD_ENCRYPTED_USER_DATA_RESP_SESSION_TOKEN]);
}
return true;
}
else
{
//print_string("GZP_CRYPT_TX_TRANS: Validation ID bad\r\n");
return false;
}
}
else
{
//print_string("GZP_CRYPT_TX_TRANS: Bad CMD. \r\n");
return false;
}
}
else
{
//print_string("GZP_CRYPT_TX_TRANS: gzp_tx_rx_trans not SUCCESS\r\n");
return false;
}
}
static bool gzp_key_update(void)
{
uint8_t tx_packet[GZP_CMD_KEY_UPDATE_PAYLOAD_LENGTH], rx_packet[GZP_MAX_ACK_PAYLOAD_LENGTH];
// Send "prepare packet" to get session token to be used for key update
tx_packet[0] = (uint8_t)GZP_CMD_KEY_UPDATE_PREPARE;
// If packet was successfully sent AND a response packet was received
if (gzp_tx_rx_transaction(tx_packet, GZP_CMD_KEY_UPDATE_PREPARE_PAYLOAD_LENGTH, rx_packet, NULL, GZP_DATA_PIPE) == GZP_TX_RX_SUCCESS)
{
if (rx_packet[0] == (uint8_t)GZP_CMD_KEY_UPDATE_PREPARE_RESP)
{
gzp_crypt_set_session_token(&rx_packet[GZP_CMD_KEY_UPDATE_PREPARE_RESP_SESSION_TOKEN]);
// Build "key update" packet
tx_packet[0] = (uint8_t)GZP_CMD_KEY_UPDATE;
gzp_add_validation_id(&tx_packet[GZP_CMD_KEY_UPDATE_VALIDATION_ID]);
gzp_random_numbers_generate(&tx_packet[GZP_CMD_KEY_UPDATE_NEW_KEY], GZP_DYN_KEY_LENGTH);
gzp_crypt_set_dyn_key(&tx_packet[GZP_CMD_KEY_UPDATE_NEW_KEY]);
// Encrypt "key update packet"
gzp_crypt_select_key(GZP_KEY_EXCHANGE);
gzp_crypt(&tx_packet[1], &tx_packet[1], GZP_CMD_KEY_UPDATE_PAYLOAD_LENGTH - 1);
// Send "key update" packet
if (gzp_tx_packet(tx_packet, GZP_CMD_KEY_UPDATE_PAYLOAD_LENGTH, GZP_DATA_PIPE))
{
return true;
}
}
}
return false;
}
#endif
void gzp_set_host_id(const uint8_t * id)
{
memcpy(gzp_host_id, id, GZP_HOST_ID_LENGTH);
}
void gzp_get_host_id(uint8_t * dst_id)
{
memcpy(dst_id, gzp_host_id, GZP_HOST_ID_LENGTH);
}
static void gzp_params_db_add(const uint8_t* src_element, uint8_t index)
{
nrf_nvmc_write_bytes((GZP_PARAMS_DB_ADR + (index * GZP_PARAMS_DB_ELEMENT_SIZE)), src_element, (uint32_t)GZP_PARAMS_DB_ELEMENT_SIZE);
}
static void gzp_params_db_read(uint8_t* dst_element, uint8_t index)
{
memcpy(dst_element,(uint8_t*)(GZP_PARAMS_DB_ADR + (index * GZP_PARAMS_DB_ELEMENT_SIZE)), GZP_PARAMS_DB_ELEMENT_SIZE);
}
static void gzp_index_db_add(uint8_t val)
{
int16_t i;
uint8_t temp_val;
uint32_t addr;
// Search for unwritten loacation in index DB
for (i = 0; i < GZP_INDEX_DB_SIZE; i++)
{
temp_val = *(uint8_t*)(GZP_INDEX_DB_ADR + i);
// Lower nibble
if (i != (GZP_INDEX_DB_SIZE - 1))
{
if ((temp_val & 0x0f) == 0x0f)
{
temp_val = (temp_val & 0xf0) | val;
break;
}
// Upper nibble
else if ((temp_val & 0xf0) == 0xf0)
{
temp_val = (temp_val & 0x0f) | (val << 4);
break;
}
}
else
{
temp_val = (GZP_PARAMS_DB_MAX_ENTRIES << 4) | val;
break;
}
}
// Write index DB
addr = (GZP_INDEX_DB_ADR + i);
nrf_nvmc_write_byte(addr, temp_val);
}
static uint8_t gzp_index_db_read()
{
uint8_t retval;
int16_t i;
// Search for previously written location
for (i = (GZP_INDEX_DB_SIZE - 1); i >= 0; i--)
{
retval = *(uint8_t*)(GZP_INDEX_DB_ADR + i);
if (retval != 0xff)
{
break;
}
}
if (retval == 0xff)
{
retval = GZP_PARAMS_DB_MAX_ENTRIES; // index db empty
}
else if ((retval & 0xf0) != 0xf0)
{
retval >>= 4;
}
else
{
retval &= 0x0f;
}
return retval;
}
int8_t gzp_get_pairing_status(void)
{
uint8_t db_byte;
int8_t db_index;
int16_t i;
uint8_t temp_element[GZP_PARAMS_DB_ELEMENT_SIZE];
uint8_t default_host_id[GZP_HOST_ID_LENGTH];
db_index = -2;
// Populate default Host ID with F's.
for (i=0; i< GZP_HOST_ID_LENGTH; i++)
{
default_host_id[i] = 0xFF;
}
// Search for previously written location
for (i = (GZP_INDEX_DB_SIZE - 1); i >= 0; i--)
{
db_byte = *(uint8_t*)(GZP_INDEX_DB_ADR + i);
// Check if idx has been written to
if (db_byte != 0xff)
{
// Convert 4-bit nibble to index
if ((db_byte & 0xf0) != 0xf0)
{
db_byte = (db_byte >> 4) & 0x0f;
}
else
{
db_byte = db_byte & 0x0f;
}
// Retrieve database entry
gzp_params_db_read(temp_element, db_byte);
// Check if database entry is all F's
if ( memcmp(&temp_element[GZP_PARAMS_DB_ELEMENT_HOST_ID], default_host_id, GZP_HOST_ID_LENGTH) != 0)
{
db_index = db_byte;
}
else
{
db_index = -1;
}
break;
}
}
return db_index;
}
static bool gzp_index_db_full()
{
#if (GZP_INDEX_DB_SIZE != 0)
return ((*(uint8_t*)(GZP_INDEX_DB_ADR + (GZP_INDEX_DB_SIZE - 1)) != 0xff));
#else
return true;
#endif
}
//lint -save -e506 Constant value boolean
static bool gzp_index_db_empty()
{
#if (GZP_INDEX_DB_SIZE != 0)
return ((GZP_INDEX_DB_SIZE == 0) || ((*(uint8_t*)(GZP_INDEX_DB_ADR)) == 0xff));
#else
return true;
#endif
}
//lint -restore
static bool gzp_array_is_set(const uint8_t* src, uint8_t length)
{
uint8_t i;
for (i = 0; i < length; i++)
{
if (*(src++) != 0xff)
{
return false;
}
}
return true;
}
static bool gzp_params_store(bool store_all)
{
uint8_t i;
bool write_index_db = false;
bool write_param_db = false;
uint8_t new_db_index = 0;
uint8_t temp_element[GZP_PARAMS_DB_ELEMENT_SIZE];
// Search param DB to see if current setup exists
if (store_all)
{
// Search for: Current system address and host ID exists
for (i = 0; i < GZP_PARAMS_DB_MAX_ENTRIES; i++)
{
gzp_params_db_read(temp_element, i);
if (((memcmp(&temp_element[GZP_PARAMS_DB_ELEMENT_SYSTEM_ADDRESS], gzp_system_address, GZP_SYSTEM_ADDRESS_WIDTH)) == 0) && ((memcmp(&temp_element[GZP_PARAMS_DB_ELEMENT_HOST_ID], gzp_host_id, GZP_HOST_ID_LENGTH)) == 0))
{
write_index_db = true;
new_db_index = i;
break; // System address + host_id allready exists in database
}
}
// Search for: Current system address and cleared host ID
if (!write_index_db)
{
for (i = 0; i < GZP_PARAMS_DB_MAX_ENTRIES; i++)
{
gzp_params_db_read(temp_element, i);
if (((memcmp(&temp_element[GZP_PARAMS_DB_ELEMENT_SYSTEM_ADDRESS], gzp_system_address, GZP_SYSTEM_ADDRESS_WIDTH)) == 0) && \
(gzp_array_is_set(&temp_element[GZP_PARAMS_DB_ELEMENT_HOST_ID], GZP_HOST_ID_LENGTH)))
{
memcpy(&temp_element[GZP_PARAMS_DB_ELEMENT_HOST_ID], gzp_host_id, GZP_HOST_ID_LENGTH);
new_db_index = i;
write_index_db = true;
write_param_db = true;
break;
}
}
}
// Search for: Cleared system address and cleared host ID
if (!write_index_db)
{
for (i = 0; i < GZP_PARAMS_DB_MAX_ENTRIES; i++)
{
gzp_params_db_read(temp_element, i);
if (gzp_array_is_set(temp_element, GZP_PARAMS_DB_ELEMENT_SIZE))
{
memcpy(&temp_element[GZP_PARAMS_DB_ELEMENT_SYSTEM_ADDRESS], gzp_system_address, GZP_SYSTEM_ADDRESS_WIDTH);
memcpy(&temp_element[GZP_PARAMS_DB_ELEMENT_HOST_ID], gzp_host_id, GZP_HOST_ID_LENGTH);
new_db_index = i;
write_index_db = true;
write_param_db = true;
break;
}
}
}
}
else
{
// Search for: System address + any host ID
for (i = 0; i < GZP_PARAMS_DB_MAX_ENTRIES; i++)
{
gzp_params_db_read(temp_element, i);
if ((memcmp(&temp_element[GZP_PARAMS_DB_ELEMENT_SYSTEM_ADDRESS], gzp_system_address, GZP_SYSTEM_ADDRESS_WIDTH)) == 0)
{
//memcpy(&temp_element[GZP_PARAMS_DB_ELEMENT_HOST_ID], gzp_host_id, GZP_HOST_ID_LENGTH);
write_index_db = true;
new_db_index = i;
break;
}
}
// Search for: System address cleared
if (!write_index_db)
{
for (i = 0; i < GZP_PARAMS_DB_MAX_ENTRIES; i++)
{
gzp_params_db_read(temp_element, i);
if (gzp_array_is_set(&temp_element[GZP_PARAMS_DB_ELEMENT_SYSTEM_ADDRESS], GZP_SYSTEM_ADDRESS_WIDTH))
{
memcpy(&temp_element[GZP_PARAMS_DB_ELEMENT_SYSTEM_ADDRESS], gzp_system_address, GZP_SYSTEM_ADDRESS_WIDTH);
write_index_db = true;
write_param_db = true;
new_db_index = i;
break;
}
}
}
}
if (write_param_db)
{
gzp_params_db_add(temp_element, new_db_index);
}
if (write_index_db)
{
if (!gzp_index_db_full() && (new_db_index != gzp_index_db_read()) && (new_db_index != GZP_PARAMS_DB_MAX_ENTRIES))
{
gzp_index_db_add(new_db_index);
return true;
}
}
return false;
}
static bool gzp_params_restore(void)
{
uint8_t i;
uint8_t temp_element[GZP_PARAMS_DB_ELEMENT_SIZE];
if (!gzp_index_db_full() && !gzp_index_db_empty())
{
i = gzp_index_db_read();
if (i < GZP_PARAMS_DB_MAX_ENTRIES)
{
gzp_params_db_read(temp_element, i);
memcpy(gzp_system_address, &temp_element[GZP_PARAMS_DB_ELEMENT_SYSTEM_ADDRESS], GZP_SYSTEM_ADDRESS_WIDTH);
gzp_set_host_id(&temp_element[GZP_PARAMS_DB_ELEMENT_HOST_ID]);
return true;
}
}
return false;
}
void gzp_delay_rx_periods(uint32_t rx_periods)
{
nrf_delay_us(rx_periods * 2 * nrf_gzll_get_timeslot_period());
}
void gzp_tick_sleep_rx_periods(uint32_t rx_periods)
{
nrf_gzll_clear_tick_count();
while (nrf_gzll_get_tick_count() < 2 * rx_periods)
{
__WFI();
}
}
void nrf_gzll_device_tx_success(uint32_t pipe, nrf_gzll_device_tx_info_t tx_info)
{
latest_tx_info = tx_info;
tx_complete = true;
tx_success = true;
}
void nrf_gzll_device_tx_failed(uint32_t pipe, nrf_gzll_device_tx_info_t tx_info)
{
latest_tx_info = tx_info;
tx_complete = true;
tx_success = false;
}
bool nrf_gzp_tx_complete(void)
{
return tx_complete;
}
bool nrf_gzp_tx_success(void)
{
return tx_success;
}
void nrf_gzp_reset_tx_complete()
{
tx_complete = false;
}
void nrf_gzp_reset_tx_success()
{
tx_success = false;
}
void nrf_gzll_disabled(void)
{
}
void nrf_gzll_host_rx_data_ready(uint32_t pipe, nrf_gzll_host_rx_info_t rx_info)
{
}
/** @} */
/** @} */