xiaozhengsheng 6df0f7d96e 初始版本
2025-08-19 09:49:41 +08:00

245 lines
8.4 KiB
C

/**
* Copyright (c) 2016 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_config.h"
#if NRF_FSTORAGE_ENABLED
#include "nrf_fstorage.h"
#include <stddef.h>
#include <stdint.h>
#include "sdk_errors.h"
#include "sdk_macros.h"
#include "nrf_section.h"
#define NRF_LOG_MODULE_NAME nrf_fstorage
#include "nrf_log.h"
NRF_LOG_MODULE_REGISTER();
/* Create the section "fs_data". */
NRF_SECTION_DEF(fs_data, nrf_fstorage_t);
/**@brief Macro to handle user input validation.
*
* If @p _cond evaluates to true, does nothing. Otherwise,
* if the NRF_FSTORAGE_PARAM_CHECK_DISABLED is not set, logs an error message and returns @p _err.
* If the NRF_FSTORAGE_PARAM_CHECK_DISABLED is set, behaves like the @ref ASSERT macro.
*
* Parameter checking implemented using this macro can be optionally turned off for release code.
* Only disable runtime parameter checks if size if a major concern.
*
* @param _cond The condition to be evaluated.
* @param _err The error code to be returned.
*/
#define NRF_FSTORAGE_PARAM_CHECK(_cond, _err) \
NRF_PARAM_CHECK(NRF_FSTORAGE, _cond, _err, NRF_LOG_ERROR)
static bool addr_is_aligned32(uint32_t addr);
static bool addr_is_page_aligned(nrf_fstorage_t const * p_fs, uint32_t addr);
static bool addr_is_within_bounds(nrf_fstorage_t const * p_fs, uint32_t addr, uint32_t len);
ret_code_t nrf_fstorage_init(nrf_fstorage_t * p_fs,
nrf_fstorage_api_t * p_api,
void * p_param)
{
NRF_FSTORAGE_PARAM_CHECK(p_fs, NRF_ERROR_NULL);
NRF_FSTORAGE_PARAM_CHECK(p_api, NRF_ERROR_NULL);
p_fs->p_api = p_api;
return (p_fs->p_api)->init(p_fs, p_param);
}
ret_code_t nrf_fstorage_uninit(nrf_fstorage_t * p_fs,
void * p_param)
{
ret_code_t rc;
NRF_FSTORAGE_PARAM_CHECK(p_fs, NRF_ERROR_NULL);
NRF_FSTORAGE_PARAM_CHECK(p_fs->p_api, NRF_ERROR_INVALID_STATE);
rc = (p_fs->p_api)->uninit(p_fs, p_param);
/* Uninitialize the API. */
p_fs->p_api = NULL;
p_fs->p_flash_info = NULL;
return rc;
}
ret_code_t nrf_fstorage_read(nrf_fstorage_t const * p_fs,
uint32_t src,
void * p_dest,
uint32_t len)
{
NRF_FSTORAGE_PARAM_CHECK(p_fs, NRF_ERROR_NULL);
NRF_FSTORAGE_PARAM_CHECK(p_dest, NRF_ERROR_NULL);
NRF_FSTORAGE_PARAM_CHECK(p_fs->p_api, NRF_ERROR_INVALID_STATE);
NRF_FSTORAGE_PARAM_CHECK(len, NRF_ERROR_INVALID_LENGTH);
/* Source addres must be word-aligned. */
NRF_FSTORAGE_PARAM_CHECK(addr_is_aligned32(src), NRF_ERROR_INVALID_ADDR);
NRF_FSTORAGE_PARAM_CHECK(addr_is_within_bounds(p_fs, src, len), NRF_ERROR_INVALID_ADDR);
return (p_fs->p_api)->read(p_fs, src, p_dest, len);
}
ret_code_t nrf_fstorage_write(nrf_fstorage_t const * p_fs,
uint32_t dest,
void const * p_src,
uint32_t len,
void * p_context)
{
NRF_FSTORAGE_PARAM_CHECK(p_fs, NRF_ERROR_NULL);
NRF_FSTORAGE_PARAM_CHECK(p_src, NRF_ERROR_NULL);
NRF_FSTORAGE_PARAM_CHECK(p_fs->p_api, NRF_ERROR_INVALID_STATE);
NRF_FSTORAGE_PARAM_CHECK(len, NRF_ERROR_INVALID_LENGTH);
/* Length must be a multiple of the program unit. */
NRF_FSTORAGE_PARAM_CHECK(!(len % p_fs->p_flash_info->program_unit), NRF_ERROR_INVALID_LENGTH);
/* Source and destination addresses must be word-aligned. */
NRF_FSTORAGE_PARAM_CHECK(addr_is_aligned32(dest), NRF_ERROR_INVALID_ADDR);
NRF_FSTORAGE_PARAM_CHECK(addr_is_aligned32((uint32_t)p_src), NRF_ERROR_INVALID_ADDR);
NRF_FSTORAGE_PARAM_CHECK(addr_is_within_bounds(p_fs, dest, len), NRF_ERROR_INVALID_ADDR);
return (p_fs->p_api)->write(p_fs, dest, p_src, len, p_context);
}
ret_code_t nrf_fstorage_erase(nrf_fstorage_t const * p_fs,
uint32_t page_addr,
uint32_t len,
void * p_context)
{
NRF_FSTORAGE_PARAM_CHECK(p_fs, NRF_ERROR_NULL);
NRF_FSTORAGE_PARAM_CHECK(p_fs->p_api, NRF_ERROR_INVALID_STATE);
NRF_FSTORAGE_PARAM_CHECK(len, NRF_ERROR_INVALID_LENGTH);
/* Address must be aligned to a page boundary. */
NRF_FSTORAGE_PARAM_CHECK(addr_is_page_aligned(p_fs, page_addr), NRF_ERROR_INVALID_ADDR);
NRF_FSTORAGE_PARAM_CHECK(
addr_is_within_bounds(p_fs, page_addr, (len * p_fs->p_flash_info->erase_unit)),
NRF_ERROR_INVALID_ADDR
);
return (p_fs->p_api)->erase(p_fs, page_addr, len, p_context);
}
uint8_t const * nrf_fstorage_rmap(nrf_fstorage_t const * p_fs, uint32_t addr)
{
if ((p_fs == NULL) || (p_fs->p_api == NULL))
{
return NULL;
}
return (p_fs->p_api)->rmap(p_fs, addr);
}
uint8_t * nrf_fstorage_wmap(nrf_fstorage_t const * p_fs, uint32_t addr)
{
if ((p_fs == NULL) || (p_fs->p_api == NULL))
{
return NULL;
}
return (p_fs->p_api)->wmap(p_fs, addr);
}
bool nrf_fstorage_is_busy(nrf_fstorage_t const * p_fs)
{
/* If a NULL instance is provided, return true if any instance is busy.
* Uninitialized instances are considered not busy. */
if ((p_fs == NULL) || (p_fs->p_api == NULL))
{
for (uint32_t i = 0; i < NRF_FSTORAGE_INSTANCE_CNT; i++)
{
p_fs = NRF_FSTORAGE_INSTANCE_GET(i); /* cannot be NULL. */
if (p_fs->p_api != NULL)
{
/* p_api->is_busy() cannot be NULL. */
if (p_fs->p_api->is_busy(p_fs))
{
return true;
}
}
}
return false;
}
return p_fs->p_api->is_busy(p_fs);
}
static bool addr_is_within_bounds(nrf_fstorage_t const * p_fs,
uint32_t addr,
uint32_t len)
{
return ( (addr >= p_fs->start_addr)
&& (addr + len - 1 <= p_fs->end_addr));
}
static bool addr_is_aligned32(uint32_t addr)
{
return !(addr & 0x03);
}
static bool addr_is_page_aligned(nrf_fstorage_t const * p_fs,
uint32_t addr)
{
return (addr & (p_fs->p_flash_info->erase_unit - 1)) == 0;
}
#endif // NRF_FSTORAGE_ENABLED