634 lines
19 KiB
C
634 lines
19 KiB
C
/**
|
|
* Copyright (c) 2016 - 2020, Nordic Semiconductor ASA
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form, except as embedded into a Nordic
|
|
* Semiconductor ASA integrated circuit in a product or a software update for
|
|
* such product, must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other
|
|
* materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* 4. This software, with or without modification, must only be used with a
|
|
* Nordic Semiconductor ASA integrated circuit.
|
|
*
|
|
* 5. Any software provided in binary form under this license must not be reverse
|
|
* engineered, decompiled, modified and/or disassembled.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
|
|
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include "sdk_common.h"
|
|
#if NRF_MODULE_ENABLED(NRF_DRV_CSENSE)
|
|
#include "nrf_drv_csense.h"
|
|
#include "nrf_peripherals.h"
|
|
#include "nrf_gpio.h"
|
|
#include "app_error.h"
|
|
#include "app_util_platform.h"
|
|
#include "nrf_assert.h"
|
|
#include "string.h"
|
|
#include <stdio.h>
|
|
|
|
#if defined(__CORTEX_M) && (__CORTEX_M < 4)
|
|
#ifndef ARM_MATH_CM0PLUS
|
|
#define ARM_MATH_CM0PLUS
|
|
#endif
|
|
/*lint -save -e689 */
|
|
#include "arm_math.h"
|
|
/*lint -restore */
|
|
#endif
|
|
|
|
#if USE_COMP
|
|
#include "nrf_drv_comp.h"
|
|
#include "nrf_drv_ppi.h"
|
|
#include "nrf_drv_timer.h"
|
|
#endif //USE_COMP
|
|
|
|
#if USE_COMP == 0
|
|
#ifdef ADC_PRESENT
|
|
#include "nrfx_adc.h"
|
|
|
|
/**
|
|
* @defgroup adc_defines ADC defines to count input voltage.
|
|
* @{
|
|
*/
|
|
#define ADC_RES_10BIT 1024
|
|
#define ADC_INPUT_PRESCALER 3
|
|
#define ADC_REF_VBG_VOLTAGE 1.2
|
|
/* @} */
|
|
|
|
/* ADC channel used to call conversion. */
|
|
static nrfx_adc_channel_t adc_channel = NRFX_ADC_DEFAULT_CHANNEL(NRF_ADC_CONFIG_INPUT_0);
|
|
#elif defined(SAADC_PRESENT)
|
|
#include "nrf_drv_saadc.h"
|
|
|
|
/**
|
|
* @defgroup saadc_defines SAADC defines to count input voltage.
|
|
* @{
|
|
*/
|
|
#define SAADC_RES_10BIT 1024
|
|
#define SAADC_INPUT_PRESCALER 3
|
|
#define SAADC_REF_VBG_VOLTAGE 0.6
|
|
/* @} */
|
|
|
|
/* SAADC channel used to call conversion. */
|
|
static nrf_saadc_channel_config_t saadc_channel = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_AIN0);
|
|
#endif //ADC_PRESENT
|
|
#endif //USE_COMP
|
|
|
|
#if USE_COMP
|
|
/* Number of channels required by PPI. */
|
|
#define PPI_REQUIRED_CHANNELS 3
|
|
|
|
/* Array of PPI channels. */
|
|
static nrf_ppi_channel_t m_ppi_channels[PPI_REQUIRED_CHANNELS];
|
|
|
|
|
|
/**
|
|
* @defgroup timer_instances Timer instances.
|
|
* @{
|
|
*/
|
|
static const nrf_drv_timer_t m_timer0 = NRF_DRV_TIMER_INSTANCE(TIMER0_FOR_CSENSE);
|
|
static const nrf_drv_timer_t m_timer1 = NRF_DRV_TIMER_INSTANCE(TIMER1_FOR_CSENSE);
|
|
/* @} */
|
|
#endif //USE_COMP
|
|
|
|
/* Configuration of the capacitive sensor module. */
|
|
typedef struct
|
|
{
|
|
volatile nrfx_drv_state_t module_state; /**< State of the module. */
|
|
nrf_drv_csense_event_handler_t event_handler; /**< Event handler for capacitor sensor events. */
|
|
uint16_t analog_values[MAX_ANALOG_INPUTS]; /**< Array containing analog values measured on the corresponding COMP/ADC channel. */
|
|
volatile bool busy; /**< Indicates state of module - busy if there are ongoing conversions. */
|
|
volatile uint8_t cur_chann_idx; /**< Current channel to be read if enabled. */
|
|
volatile uint8_t adc_channels_input_mask; /**< Enabled channels. */
|
|
uint8_t output_pin; /**< Pin to generate signal charging capacitors. */
|
|
uint8_t channels_to_read; /**< Mask of channels remaining to be read in the current measurement. */
|
|
volatile bool timers_powered_on; /**< Flag to indicate if timers were already started. */
|
|
}csense_t;
|
|
|
|
static csense_t m_csense;
|
|
|
|
/**
|
|
* @brief Function for determining the next analog channel to be read.
|
|
*/
|
|
__STATIC_INLINE void calculate_next_channel(void)
|
|
{
|
|
m_csense.cur_chann_idx = 31 - __CLZ(m_csense.channels_to_read);
|
|
}
|
|
|
|
/**
|
|
* @brief Function for handling conversion values.
|
|
*
|
|
* @param[in] val Value received from ADC or COMP.
|
|
*/
|
|
static void conversion_handler(uint16_t val)
|
|
{
|
|
nrf_drv_csense_evt_t event_struct;
|
|
|
|
#if USE_COMP == 0
|
|
nrf_gpio_pin_set(m_csense.output_pin);
|
|
#endif //USE_COMP
|
|
|
|
m_csense.analog_values[m_csense.cur_chann_idx] = val;
|
|
|
|
event_struct.read_value = val;
|
|
event_struct.analog_channel = m_csense.cur_chann_idx;
|
|
|
|
m_csense.channels_to_read &= ~(1UL<<m_csense.cur_chann_idx);
|
|
|
|
// decide if there will be more conversions
|
|
if (m_csense.channels_to_read == 0)
|
|
{
|
|
m_csense.busy = false;
|
|
#if USE_COMP == 0 && defined(SAADC_PRESENT)
|
|
nrf_saadc_disable();
|
|
#endif
|
|
}
|
|
|
|
m_csense.event_handler(&event_struct);
|
|
|
|
if (m_csense.channels_to_read > 0) // Start new conversion.
|
|
{
|
|
ret_code_t err_code;
|
|
calculate_next_channel();
|
|
err_code = nrf_drv_csense_sample();
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if USE_COMP
|
|
/**
|
|
* @brief Timer0 interrupt handler.
|
|
*
|
|
* @param[in] event_type Timer event.
|
|
* @param[in] p_context General purpose parameter set during initialization of
|
|
* the timer. This parameter can be used to pass
|
|
* additional information to the handler function, for
|
|
* example, the timer ID.
|
|
*/
|
|
static void counter_compare_handler(nrf_timer_event_t event_type, void* p_context)
|
|
{
|
|
if (event_type == NRF_TIMER_EVENT_COMPARE0)
|
|
{
|
|
uint16_t val = nrf_drv_timer_capture_get(&m_timer1, NRF_TIMER_CC_CHANNEL1);
|
|
nrf_drv_timer_pause(&m_timer1);
|
|
nrf_drv_timer_clear(&m_timer1);
|
|
|
|
/* Handle finished measurement. */
|
|
conversion_handler(val);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Dummy handler.
|
|
*
|
|
* @param[in] event_type Timer event.
|
|
* @param[in] p_context General purpose parameter set during initialization of
|
|
* the timer. This parameter can be used to pass
|
|
* additional information to the handler function, for
|
|
* example, the timer ID.
|
|
*/
|
|
static void dummy_handler(nrf_timer_event_t event_type, void* p_context){}
|
|
|
|
/**
|
|
* @brief Function for initializing timers.
|
|
*
|
|
* @retval NRF_ERROR_INTERNAL If there were error initializing timers.
|
|
* @retval NRF_SUCCESS If timers were initialized successfully.
|
|
*/
|
|
static ret_code_t timer_init(void)
|
|
{
|
|
ret_code_t err_code;
|
|
|
|
//set first timer in timer mode to get period of relaxation oscillator
|
|
nrf_drv_timer_config_t timer_config = NRF_DRV_TIMER_DEFAULT_CONFIG;
|
|
timer_config.mode = NRF_TIMER_MODE_TIMER;
|
|
err_code = nrf_drv_timer_init(&m_timer1, &timer_config, dummy_handler);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
|
|
//set second timer in counter mode and generate event on tenth period
|
|
timer_config.mode = NRF_TIMER_MODE_COUNTER;
|
|
err_code = nrf_drv_timer_init(&m_timer0, &timer_config, counter_compare_handler);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
nrf_drv_timer_extended_compare(&m_timer0, NRF_TIMER_CC_CHANNEL0, MEASUREMENT_PERIOD, (nrf_timer_short_mask_t)(NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK | NRF_TIMER_SHORT_COMPARE0_STOP_MASK), true);
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* @brief Function for initializing and enabling PPI channels.
|
|
*
|
|
* @retval NRF_ERROR_INTERNAL If there were error initializing or enabling PPI channels.
|
|
* @retval NRF_SUCCESS If PPI channels were initialized and enabled successfully.
|
|
*/
|
|
static ret_code_t ppi_init(void)
|
|
{
|
|
ret_code_t err_code;
|
|
uint8_t i;
|
|
|
|
err_code = nrf_drv_ppi_init();
|
|
if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_MODULE_ALREADY_INITIALIZED))
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
|
|
for (i = 0; i < PPI_REQUIRED_CHANNELS ; i++)
|
|
{
|
|
err_code = nrf_drv_ppi_channel_alloc(&m_ppi_channels[i]);
|
|
if (NRF_SUCCESS != err_code)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
err_code = nrf_drv_ppi_channel_assign(m_ppi_channels[0], nrf_drv_comp_event_address_get(NRF_COMP_EVENT_CROSS), nrf_drv_timer_task_address_get(&m_timer0, NRF_TIMER_TASK_COUNT));
|
|
if (NRF_SUCCESS != err_code)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
err_code = nrf_drv_ppi_channel_assign(m_ppi_channels[1], nrf_drv_timer_event_address_get(&m_timer0, NRF_TIMER_EVENT_COMPARE0), nrf_drv_timer_task_address_get(&m_timer1, NRF_TIMER_TASK_CAPTURE1));
|
|
if (NRF_SUCCESS != err_code)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
err_code = nrf_drv_ppi_channel_fork_assign(m_ppi_channels[1], nrf_drv_comp_task_address_get(NRF_COMP_TASK_STOP));
|
|
if (NRF_SUCCESS != err_code)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
err_code = nrf_drv_ppi_channel_assign(m_ppi_channels[2], nrf_drv_comp_event_address_get(NRF_COMP_EVENT_READY), nrf_drv_timer_task_address_get(&m_timer0, NRF_TIMER_TASK_CLEAR));
|
|
if (NRF_SUCCESS != err_code)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
err_code = nrf_drv_ppi_channel_fork_assign(m_ppi_channels[2], nrf_drv_timer_task_address_get(&m_timer1, NRF_TIMER_TASK_CLEAR));
|
|
if (NRF_SUCCESS != err_code)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
|
|
for (i = 0; i < PPI_REQUIRED_CHANNELS ; i++)
|
|
{
|
|
err_code = nrf_drv_ppi_channel_enable(m_ppi_channels[i]);
|
|
if (NRF_SUCCESS != err_code)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* @brief Dummy handler for COMP events.
|
|
*
|
|
* @param[in] event COMP event.
|
|
*/
|
|
static void comp_event_handler(nrf_comp_event_t event){}
|
|
|
|
/**
|
|
* @brief Function for initializing COMP module in relaxation oscillator mode.
|
|
*
|
|
* @note The frequency of the oscillator depends on threshold voltages, current source and capacitance of pad and can be calculated as f_OSC = I_SOURCE / (2C·(VUP-VDOWN) ).
|
|
*
|
|
* @retval NRF_ERROR_INTERNAL If there were error while initializing COMP driver.
|
|
* @retval NRF_SUCCESS If the COMP driver initialization was successful.
|
|
*/
|
|
static ret_code_t comp_init(void)
|
|
{
|
|
ret_code_t err_code;
|
|
nrf_drv_comp_config_t m_comp_config = NRF_DRV_COMP_DEFAULT_CONFIG(NRF_COMP_INPUT_0);
|
|
|
|
/* Workaround for Errata 12 "COMP: Reference ladder is not correctly calibrated" found at the Errata document
|
|
for your device located at https://infocenter.nordicsemi.com/ */
|
|
*(volatile uint32_t *)0x40013540 = (*(volatile uint32_t *)0x10000324 & 0x00001F00) >> 8;
|
|
|
|
m_comp_config.isource = NRF_COMP_ISOURCE_Ien10uA;
|
|
|
|
err_code = nrf_drv_comp_init(&m_comp_config, comp_event_handler);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
#endif //USE_COMP
|
|
|
|
#if USE_COMP == 0
|
|
#ifdef ADC_PRESENT
|
|
/**
|
|
* @brief ADC handler.
|
|
*
|
|
* @param[in] p_event Pointer to analog-to-digital converter driver event.
|
|
*/
|
|
void adc_handler(nrfx_adc_evt_t const * p_event)
|
|
{
|
|
nrf_gpio_pin_set(m_csense.output_pin);
|
|
uint16_t val;
|
|
val = (uint16_t)(p_event->data.sample.sample *
|
|
ADC_REF_VBG_VOLTAGE * 1000 *
|
|
ADC_INPUT_PRESCALER / ADC_RES_10BIT);
|
|
conversion_handler(val);
|
|
}
|
|
|
|
/**
|
|
* @brief Function for initializing ADC.
|
|
*/
|
|
static ret_code_t adc_init(void)
|
|
{
|
|
ret_code_t err_code;
|
|
|
|
adc_channel.config.config.input = NRF_ADC_CONFIG_SCALING_INPUT_ONE_THIRD;
|
|
|
|
nrfx_adc_config_t const adc_config = NRFX_ADC_DEFAULT_CONFIG;
|
|
err_code = nrfx_adc_init(&adc_config, adc_handler);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
|
|
nrf_gpio_pin_set(m_csense.output_pin);
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
#elif defined(SAADC_PRESENT)
|
|
/**
|
|
* @brief SAADC handler.
|
|
*
|
|
* @param[in] p_event Pointer to analog-to-digital converter driver event.
|
|
*/
|
|
void saadc_handler(nrf_drv_saadc_evt_t const * p_event)
|
|
{
|
|
nrf_gpio_pin_set(m_csense.output_pin);
|
|
uint16_t val;
|
|
(void)nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, 1);
|
|
val = (uint16_t)(*p_event->data.done.p_buffer *
|
|
SAADC_REF_VBG_VOLTAGE * 1000 *
|
|
SAADC_INPUT_PRESCALER / SAADC_RES_10BIT);
|
|
conversion_handler(val);
|
|
}
|
|
|
|
/**
|
|
* @brief Function for initializing SAADC.
|
|
*/
|
|
static ret_code_t saadc_init(void)
|
|
{
|
|
ret_code_t err_code;
|
|
static nrf_saadc_value_t saadc_value;
|
|
|
|
saadc_channel.gain = NRF_SAADC_GAIN1_3;
|
|
|
|
err_code = nrf_drv_saadc_init(NULL, saadc_handler);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
|
|
nrf_gpio_pin_set(m_csense.output_pin);
|
|
|
|
err_code = nrf_drv_saadc_channel_init(0, &saadc_channel);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
|
|
err_code = nrf_drv_saadc_buffer_convert(&saadc_value, 1);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return NRF_ERROR_INTERNAL;
|
|
}
|
|
|
|
nrf_saadc_disable();
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
#endif //ADC_PRESENT
|
|
#endif //USE_COMP
|
|
|
|
ret_code_t nrf_drv_csense_init(nrf_drv_csense_config_t const * p_config, nrf_drv_csense_event_handler_t event_handler)
|
|
{
|
|
ASSERT(m_csense.module_state == NRFX_DRV_STATE_UNINITIALIZED);
|
|
ASSERT(p_config->output_pin <= NUMBER_OF_PINS);
|
|
|
|
ret_code_t err_code;
|
|
|
|
if (p_config == NULL)
|
|
{
|
|
return NRF_ERROR_INVALID_PARAM;
|
|
}
|
|
|
|
if (event_handler == NULL)
|
|
{
|
|
return NRF_ERROR_INVALID_PARAM;
|
|
}
|
|
|
|
m_csense.busy = false;
|
|
|
|
#if USE_COMP == 0
|
|
m_csense.output_pin = p_config->output_pin;
|
|
nrf_gpio_cfg_output(m_csense.output_pin);
|
|
nrf_gpio_pin_set(m_csense.output_pin);
|
|
#endif //COMP_PRESENT
|
|
|
|
m_csense.event_handler = event_handler;
|
|
|
|
#if USE_COMP
|
|
err_code = comp_init();
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
err_code = timer_init();
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
err_code = ppi_init();
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
#else
|
|
#ifdef ADC_PRESENT
|
|
err_code = adc_init();
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
#elif defined(SAADC_PRESENT)
|
|
err_code = saadc_init();
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
#endif //ADC_PRESENT
|
|
#endif //USE_COMP
|
|
|
|
m_csense.module_state = NRFX_DRV_STATE_INITIALIZED;
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
ret_code_t nrf_drv_csense_uninit(void)
|
|
{
|
|
ASSERT(m_csense.module_state != NRFX_DRV_STATE_UNINITIALIZED);
|
|
|
|
nrf_drv_csense_channels_disable(0xFF);
|
|
|
|
#if USE_COMP
|
|
ret_code_t err_code;
|
|
uint8_t i;
|
|
|
|
nrf_drv_timer_uninit(&m_timer0);
|
|
nrf_drv_timer_uninit(&m_timer1);
|
|
nrf_drv_comp_uninit();
|
|
for (i =0; i < 3; i++)
|
|
{
|
|
err_code = nrf_drv_ppi_channel_free(m_ppi_channels[i]);
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
}
|
|
err_code = nrf_drv_ppi_uninit();
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
#else
|
|
#ifdef ADC_PRESENT
|
|
nrfx_adc_uninit();
|
|
#elif defined(SAADC_PRESENT)
|
|
nrf_drv_saadc_uninit();
|
|
#endif //ADC_PRESENT
|
|
#endif //USE_COMP
|
|
|
|
m_csense.module_state = NRFX_DRV_STATE_UNINITIALIZED;
|
|
|
|
memset((void*)&m_csense, 0, sizeof(m_csense));
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
void nrf_drv_csense_channels_enable(uint8_t channels_mask)
|
|
{
|
|
ASSERT(m_csense.module_state != NRFX_DRV_STATE_UNINITIALIZED);
|
|
|
|
m_csense.busy = true;
|
|
|
|
m_csense.module_state = NRFX_DRV_STATE_POWERED_ON;
|
|
|
|
m_csense.adc_channels_input_mask |= channels_mask;
|
|
|
|
m_csense.busy = false;
|
|
}
|
|
|
|
void nrf_drv_csense_channels_disable(uint8_t channels_mask)
|
|
{
|
|
ASSERT(m_csense.module_state == NRFX_DRV_STATE_POWERED_ON);
|
|
|
|
m_csense.adc_channels_input_mask &= ~channels_mask;
|
|
|
|
if (m_csense.adc_channels_input_mask == 0)
|
|
{
|
|
m_csense.module_state = NRFX_DRV_STATE_INITIALIZED;
|
|
}
|
|
}
|
|
|
|
uint16_t nrf_drv_csense_channel_read(uint8_t csense_channel)
|
|
{
|
|
return m_csense.analog_values[csense_channel];
|
|
}
|
|
|
|
ret_code_t nrf_drv_csense_sample(void)
|
|
{
|
|
ASSERT(m_csense.module_state == NRFX_DRV_STATE_POWERED_ON);
|
|
|
|
if (m_csense.adc_channels_input_mask != 0)
|
|
{
|
|
if (m_csense.channels_to_read == 0)
|
|
{
|
|
#if USE_COMP == 0 && defined(SAADC_PRESENT)
|
|
nrf_saadc_enable();
|
|
#endif
|
|
if (nrf_drv_csense_is_busy() == true)
|
|
{
|
|
return NRF_ERROR_BUSY;
|
|
}
|
|
m_csense.busy = true;
|
|
m_csense.channels_to_read = m_csense.adc_channels_input_mask;
|
|
calculate_next_channel();
|
|
}
|
|
|
|
#if USE_COMP
|
|
if (!m_csense.timers_powered_on)
|
|
{
|
|
nrf_drv_timer_enable(&m_timer0);
|
|
nrf_drv_timer_enable(&m_timer1);
|
|
m_csense.timers_powered_on = true;
|
|
}
|
|
else
|
|
{
|
|
nrf_drv_timer_resume(&m_timer0);
|
|
nrf_drv_timer_resume(&m_timer1);
|
|
}
|
|
nrf_drv_comp_pin_select((nrf_comp_input_t)m_csense.cur_chann_idx);
|
|
nrf_drv_comp_start(0, 0);
|
|
#else
|
|
ret_code_t err_code;
|
|
#ifdef ADC_PRESENT
|
|
adc_channel.config.config.ain = (nrf_adc_config_input_t)(1<<m_csense.cur_chann_idx);
|
|
nrf_gpio_pin_clear(m_csense.output_pin);
|
|
err_code = nrfx_adc_sample_convert(&adc_channel, NULL);
|
|
#elif defined(SAADC_PRESENT)
|
|
saadc_channel.pin_p = (nrf_saadc_input_t)(m_csense.cur_chann_idx + 1);
|
|
nrf_saadc_channel_input_set(0, saadc_channel.pin_p, NRF_SAADC_INPUT_DISABLED);
|
|
nrf_gpio_pin_clear(m_csense.output_pin);
|
|
err_code = nrf_drv_saadc_sample();
|
|
#endif //ADC_PRESENT
|
|
if (err_code != NRF_SUCCESS)
|
|
{
|
|
return err_code;
|
|
}
|
|
#endif //USE_COMP
|
|
}
|
|
|
|
return NRF_SUCCESS;
|
|
}
|
|
|
|
bool nrf_drv_csense_is_busy(void)
|
|
{
|
|
return m_csense.busy;
|
|
}
|
|
#endif //NRF_MODULE_ENABLED(NRF_DRV_CSENSE)
|