xiaozhengsheng 6df0f7d96e 初始版本
2025-08-19 09:49:41 +08:00

830 lines
28 KiB
C

/**
* Copyright (c) 2016 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(NRF_BLOCK_DEV_QSPI)
#include "nrf_serial_flash_params.h"
#include "nrf_block_dev_qspi.h"
#include <inttypes.h>
/**@file
*
* @ingroup nrf_block_dev_qspi
* @{
*
* @brief This module implements block device API. It should be used as a reference block device.
*/
#if NRF_BLOCK_DEV_QSPI_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL NRF_BLOCK_DEV_QSPI_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR NRF_BLOCK_DEV_QSPI_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR NRF_BLOCK_DEV_QSPI_CONFIG_DEBUG_COLOR
#else
#define NRF_LOG_LEVEL 0
#endif
#include "nrf_log.h"
#define QSPI_STD_CMD_WRSR 0x01 /**< Write status register command*/
#define QSPI_STD_CMD_RSTEN 0x66 /**< Reset enable command*/
#define QSPI_STD_CMD_RST 0x99 /**< Reset command*/
#define QSPI_STD_CMD_READ_ID 0x9F /**< Read ID command*/
#define BD_PAGE_PROGRAM_SIZE 256 /**< Page program size (minimum block size)*/
#define BD_ERASE_UNIT_INVALID_ID 0xFFFFFFFF /**< Invalid erase unit number*/
#define BD_ERASE_UNIT_ERASE_VAL 0xFFFFFFFF /**< Erased memory value*/
/**
* @brief Block to erase unit translation
*
* @param blk_id Block index
* @param blk_size Block size
* */
#define BD_BLOCK_TO_ERASEUNIT(blk_id, blk_size) \
((blk_id) * (blk_size)) / (NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE)
/**
* @brief Blocks per erase unit
*
* @param blk_size Block size
* */
#define BD_BLOCKS_PER_ERASEUNIT(blk_size) \
(NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE / (blk_size))
static ret_code_t block_dev_qspi_eunit_write(nrf_block_dev_qspi_t const * p_qspi_dev,
nrf_block_req_t * p_blk_left);
static void block_dev_qspi_read_from_eunit(nrf_block_dev_qspi_t const * p_qspi_dev)
{
nrf_block_dev_qspi_work_t const * p_work = p_qspi_dev->p_work;
/*In write-back mode data that we read might not be the same as in erase unit buffer*/
uint32_t eunit_start = BD_BLOCK_TO_ERASEUNIT(p_work->req.blk_id,
p_work->geometry.blk_size);
uint32_t eunit_end = BD_BLOCK_TO_ERASEUNIT(p_work->req.blk_id + p_work->req.blk_count,
p_work->geometry.blk_size);
if ((eunit_start > p_work->erase_unit_idx) || (eunit_end < p_work->erase_unit_idx))
{
/*Do nothing. Read request doesn't hit current cached erase unit*/
return;
}
/*Case 1: Copy data from start erase unit*/
if (eunit_start == p_work->erase_unit_idx)
{
size_t blk = p_work->req.blk_id %
BD_BLOCKS_PER_ERASEUNIT(p_work->geometry.blk_size);
size_t cnt = BD_BLOCKS_PER_ERASEUNIT(p_work->geometry.blk_size) - blk;
size_t off = p_work->geometry.blk_size * blk;
if (cnt > p_work->req.blk_count)
{
cnt = p_work->req.blk_count;
}
memcpy(p_work->req.p_buff,
p_work->p_erase_unit_buff + off,
cnt * p_work->geometry.blk_size);
return;
}
/*Case 2: Copy data from end erase unit*/
if (eunit_end == p_work->erase_unit_idx)
{
size_t cnt = (p_work->req.blk_id + p_work->req.blk_count) %
BD_BLOCKS_PER_ERASEUNIT(p_work->geometry.blk_size);
size_t off = (p_work->erase_unit_idx * BD_BLOCKS_PER_ERASEUNIT(p_work->geometry.blk_size) -
p_work->req.blk_id) * p_work->geometry.blk_size;
if (cnt > p_work->req.blk_count)
{
cnt = p_work->req.blk_count;
}
memcpy((uint8_t *)p_work->req.p_buff + off,
p_work->p_erase_unit_buff,
cnt * p_work->geometry.blk_size);
return;
}
/*Case 3: Copy data from eunit_start < p_work->erase_unit_idx < eunit_end*/
size_t off = (p_work->erase_unit_idx * BD_BLOCKS_PER_ERASEUNIT(p_work->geometry.blk_size) -
p_work->req.blk_id) * p_work->geometry.blk_size;
memcpy((uint8_t *)p_work->req.p_buff + off,
p_work->p_erase_unit_buff,
NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE);
}
/**
* @brief Active QSPI block device handle. Only one instance.
* */
static nrf_block_dev_qspi_t const * m_active_qspi_dev;
static void qspi_handler(nrf_drv_qspi_evt_t event, void * p_context)
{
if (m_active_qspi_dev != p_context)
{
return;
}
nrf_block_dev_qspi_t const * p_qspi_dev = p_context;
nrf_block_dev_qspi_work_t * p_work = p_qspi_dev->p_work;
nrf_block_req_t * p_blk_left = &p_work->left_req;
switch (p_work->state)
{
case NRF_BLOCK_DEV_QSPI_STATE_READ_EXEC:
{
if (p_work->writeback_mode)
{
block_dev_qspi_read_from_eunit(p_qspi_dev);
}
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_IDLE;
if (p_work->ev_handler)
{
const nrf_block_dev_event_t ev = {
NRF_BLOCK_DEV_EVT_BLK_READ_DONE,
NRF_BLOCK_DEV_RESULT_SUCCESS,
&p_work->req,
p_work->p_context
};
p_work->ev_handler(&p_qspi_dev->block_dev, &ev);
}
break;
}
case NRF_BLOCK_DEV_QSPI_STATE_EUNIT_LOAD:
{
ret_code_t ret;
uint32_t erase_unit = BD_BLOCK_TO_ERASEUNIT(p_blk_left->blk_id,
p_work->geometry.blk_size);
UNUSED_VARIABLE(erase_unit);
ASSERT(erase_unit == p_work->erase_unit_idx);
/* Check if block is in erase unit buffer*/
ret = block_dev_qspi_eunit_write(p_qspi_dev, p_blk_left);
ASSERT(ret == NRF_SUCCESS);
UNUSED_VARIABLE(ret);
break;
}
case NRF_BLOCK_DEV_QSPI_STATE_WRITE_ERASE:
case NRF_BLOCK_DEV_QSPI_STATE_WRITE_EXEC:
{
/*Clear last programmed block*/
uint32_t block_to_program = __CLZ(__RBIT(p_work->erase_unit_dirty_blocks));
if (p_work->state == NRF_BLOCK_DEV_QSPI_STATE_WRITE_EXEC)
{
p_work->erase_unit_dirty_blocks ^= 1u << block_to_program;
}
if (p_work->erase_unit_dirty_blocks == 0)
{
if (p_work->left_req.blk_count)
{
/*Load next erase unit*/
ret_code_t ret;
uint32_t eunit = BD_BLOCK_TO_ERASEUNIT(p_blk_left->blk_id,
p_work->geometry.blk_size);
p_work->erase_unit_idx = eunit;
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_EUNIT_LOAD;
ret = nrf_drv_qspi_read(p_work->p_erase_unit_buff,
NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE,
p_work->erase_unit_idx *
NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE);
UNUSED_VARIABLE(ret);
break;
}
/*All blocks are programmed. Call event handler if required.*/
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_IDLE;
if (p_work->ev_handler && !p_work->cache_flushing)
{
const nrf_block_dev_event_t ev = {
NRF_BLOCK_DEV_EVT_BLK_WRITE_DONE,
NRF_BLOCK_DEV_RESULT_SUCCESS,
&p_work->req,
p_work->p_context
};
p_work->ev_handler(&p_qspi_dev->block_dev, &ev);
}
p_work->cache_flushing = false;
break;
}
/*Get next block to program from program mask*/
block_to_program = __CLZ(__RBIT(p_work->erase_unit_dirty_blocks));
uint32_t dst_address = (p_work->erase_unit_idx * NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE) +
(block_to_program * p_work->geometry.blk_size);
const void * p_src_address = p_work->p_erase_unit_buff +
block_to_program * p_work->geometry.blk_size;
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_WRITE_EXEC;
ret_code_t ret = nrf_drv_qspi_write(p_src_address,
p_work->geometry.blk_size,
dst_address);
UNUSED_VARIABLE(ret);
break;
}
default:
ASSERT(0);
break;
}
}
static void wait_for_idle(nrf_block_dev_qspi_t const * p_qspi_dev)
{
nrf_block_dev_qspi_work_t * p_work = p_qspi_dev->p_work;
while (p_work->state != NRF_BLOCK_DEV_QSPI_STATE_IDLE)
{
__WFI();
}
}
static ret_code_t block_dev_qspi_init(nrf_block_dev_t const * p_blk_dev,
nrf_block_dev_ev_handler ev_handler,
void const * p_context)
{
ASSERT(p_blk_dev);
nrf_block_dev_qspi_t const * p_qspi_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_qspi_t, block_dev);
nrf_block_dev_qspi_work_t * p_work = p_qspi_dev->p_work;
nrf_drv_qspi_config_t const * p_qspi_cfg = &p_qspi_dev->qspi_bdev_config.qspi_config;
ret_code_t ret = NRF_SUCCESS;
NRF_LOG_INST_DEBUG(p_qspi_dev->p_log, "Init");
if (p_qspi_dev->qspi_bdev_config.block_size % BD_PAGE_PROGRAM_SIZE)
{
/*Unsupported block size*/
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "Unsupported block size because of program page size");
return NRF_ERROR_NOT_SUPPORTED;
}
if (NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE % p_qspi_dev->qspi_bdev_config.block_size)
{
/*Unsupported block size*/
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "Unsupported block size because of erase unit size");
return NRF_ERROR_NOT_SUPPORTED;
}
if (m_active_qspi_dev)
{
/* QSPI instance is BUSY*/
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "Cannot init because QSPI is busy");
return NRF_ERROR_BUSY;
}
ret = nrf_drv_qspi_init(p_qspi_cfg, qspi_handler, (void *)p_blk_dev);
if (ret != NRF_SUCCESS)
{
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "QSPI init error: %"PRIu32"", ret);
return ret;
}
nrf_qspi_cinstr_conf_t cinstr_cfg = {
.opcode = QSPI_STD_CMD_RSTEN,
.length = NRF_QSPI_CINSTR_LEN_1B,
.io2_level = true,
.io3_level = true,
.wipwait = true,
.wren = true
};
/* Send reset enable */
ret = nrf_drv_qspi_cinstr_xfer(&cinstr_cfg, NULL, NULL);
if (ret != NRF_SUCCESS)
{
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "QSPI reset enable command error: %"PRIu32"", ret);
return ret;
}
/* Send reset command */
cinstr_cfg.opcode = QSPI_STD_CMD_RST;
ret = nrf_drv_qspi_cinstr_xfer(&cinstr_cfg, NULL, NULL);
if (ret != NRF_SUCCESS)
{
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "QSPI reset command error: %"PRIu32"", ret);
return ret;
}
/* Get 3 byte identification value */
uint8_t rdid_buf[3] = {0, 0, 0};
cinstr_cfg.opcode = QSPI_STD_CMD_READ_ID;
cinstr_cfg.length = NRF_QSPI_CINSTR_LEN_4B;
ret = nrf_drv_qspi_cinstr_xfer(&cinstr_cfg, NULL, rdid_buf);
if (ret != NRF_SUCCESS)
{
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "QSPI get 3 byte id error: %"PRIu32"", ret);
return ret;
}
nrf_serial_flash_params_t const * serial_flash_id = nrf_serial_flash_params_get(rdid_buf);
if (!serial_flash_id)
{
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "QSPI FLASH not supported");
return NRF_ERROR_NOT_SUPPORTED;
}
if (serial_flash_id->erase_size != NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE)
{
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "QSPI FLASH erase unit size not supported");
return NRF_ERROR_NOT_SUPPORTED;
}
/* Calculate block device geometry.... */
uint32_t blk_size = p_qspi_dev->qspi_bdev_config.block_size;
uint32_t blk_count = serial_flash_id->size / p_qspi_dev->qspi_bdev_config.block_size;
if (!blk_count || (blk_count % BD_BLOCKS_PER_ERASEUNIT(blk_size)))
{
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "QSPI FLASH block size not supported");
return NRF_ERROR_NOT_SUPPORTED;
}
p_work->geometry.blk_size = blk_size;
p_work->geometry.blk_count = blk_count;
p_work->p_context = p_context;
p_work->ev_handler = ev_handler;
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_IDLE;
p_work->erase_unit_idx = BD_ERASE_UNIT_INVALID_ID;
p_work->writeback_mode = (p_qspi_dev->qspi_bdev_config.flags &
NRF_BLOCK_DEV_QSPI_FLAG_CACHE_WRITEBACK) != 0;
m_active_qspi_dev = p_qspi_dev;
if (p_work->ev_handler)
{
/*Asynchronous operation (simulation)*/
const nrf_block_dev_event_t ev = {
NRF_BLOCK_DEV_EVT_INIT,
NRF_BLOCK_DEV_RESULT_SUCCESS,
NULL,
p_work->p_context
};
p_work->ev_handler(p_blk_dev, &ev);
}
return NRF_SUCCESS;
}
static ret_code_t block_dev_qspi_uninit(nrf_block_dev_t const * p_blk_dev)
{
ASSERT(p_blk_dev);
nrf_block_dev_qspi_t const * p_qspi_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_qspi_t, block_dev);
nrf_block_dev_qspi_work_t * p_work = p_qspi_dev->p_work;
NRF_LOG_INST_DEBUG(p_qspi_dev->p_log, "Uninit");
if (m_active_qspi_dev != p_qspi_dev)
{
/* QSPI instance is BUSY*/
return NRF_ERROR_BUSY;
}
if (p_work->state != NRF_BLOCK_DEV_QSPI_STATE_IDLE)
{
/* Previous asynchronous operation in progress*/
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "Cannot uninit because QSPI is busy");
return NRF_ERROR_BUSY;
}
if (p_work->ev_handler)
{
/*Asynchronous operation*/
const nrf_block_dev_event_t ev = {
NRF_BLOCK_DEV_EVT_UNINIT,
NRF_BLOCK_DEV_RESULT_SUCCESS,
NULL,
p_work->p_context
};
p_work->ev_handler(p_blk_dev, &ev);
}
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_DISABLED;
nrf_drv_qspi_uninit();
memset(p_work, 0, sizeof(nrf_block_dev_qspi_work_t));
m_active_qspi_dev = NULL;
return NRF_SUCCESS;
}
static ret_code_t block_dev_qspi_read_req(nrf_block_dev_t const * p_blk_dev,
nrf_block_req_t const * p_blk)
{
ASSERT(p_blk_dev);
ASSERT(p_blk);
nrf_block_dev_qspi_t const * p_qspi_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_qspi_t, block_dev);
nrf_block_dev_qspi_work_t * p_work = p_qspi_dev->p_work;
ret_code_t ret = NRF_SUCCESS;
NRF_LOG_INST_DEBUG(
p_qspi_dev->p_log,
"Read req from block %"PRIu32" size %"PRIu32"(x%"PRIu32") to %"PRIXPTR,
p_blk->blk_id,
p_blk->blk_count,
p_blk_dev->p_ops->geometry(p_blk_dev)->blk_size,
p_blk->p_buff);
if ((p_blk->blk_id + p_blk->blk_count) > p_work->geometry.blk_count)
{
NRF_LOG_INST_ERROR(
p_qspi_dev->p_log,
"Out of range read req block %"PRIu32" count %"PRIu32" while max is %"PRIu32,
p_blk->blk_id,
p_blk->blk_count,
p_blk_dev->p_ops->geometry(p_blk_dev)->blk_count);
return NRF_ERROR_INVALID_ADDR;
}
if (m_active_qspi_dev != p_qspi_dev)
{
/* QSPI instance is BUSY*/
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "Cannot read because QSPI is busy");
return NRF_ERROR_BUSY;
}
if (p_work->state != NRF_BLOCK_DEV_QSPI_STATE_IDLE)
{
/* Previous asynchronous operation in progress*/
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "Cannot read because of ongoing previous operation");
return NRF_ERROR_BUSY;
}
p_work->left_req = *p_blk;
p_work->req = *p_blk;
nrf_block_req_t * p_blk_left = &p_work->left_req;
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_READ_EXEC;
ret = nrf_drv_qspi_read(p_blk_left->p_buff,
p_blk_left->blk_count * p_work->geometry.blk_size,
p_blk_left->blk_id * p_work->geometry.blk_size);
if (ret != NRF_SUCCESS)
{
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "QSPI read error: %"PRIu32"", ret);
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_IDLE;
return ret;
}
p_blk_left->p_buff = NULL;
p_blk_left->blk_count = 0;
if (!p_work->ev_handler && (p_work->state != NRF_BLOCK_DEV_QSPI_STATE_IDLE))
{
/*Synchronous operation*/
wait_for_idle(p_qspi_dev);
}
return ret;
}
static bool block_dev_qspi_update_eunit(nrf_block_dev_qspi_t const * p_qspi_dev,
size_t off,
const void * p_src,
size_t len)
{
ASSERT((len % sizeof(uint32_t)) == 0)
nrf_block_dev_qspi_work_t * p_work = p_qspi_dev->p_work;
uint32_t * p_dst32 = (uint32_t *)(p_work->p_erase_unit_buff + off);
const uint32_t * p_src32 = p_src;
bool erase_required = false;
len /= sizeof(uint32_t);
/*Do normal copying until erase unit is not required*/
do
{
if (*p_dst32 != *p_src32)
{
if (*p_dst32 != BD_ERASE_UNIT_ERASE_VAL)
{
erase_required = true;
}
/*Mark block as dirty*/
p_work->erase_unit_dirty_blocks |= 1u << (off / p_work->geometry.blk_size);
}
*p_dst32++ = *p_src32++;
off += sizeof(uint32_t);
} while (--len);
return erase_required;
}
static ret_code_t block_dev_qspi_write_start(nrf_block_dev_qspi_t const * p_qspi_dev)
{
nrf_block_dev_qspi_work_t * p_work = p_qspi_dev->p_work;
if (!p_work->erase_required)
{
/*Get first block to program from program mask*/
uint32_t block_to_program = __CLZ(__RBIT(p_work->erase_unit_dirty_blocks));
uint32_t dst_address = (p_work->erase_unit_idx * NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE) +
(block_to_program * p_work->geometry.blk_size);
const void * p_src_address = p_work->p_erase_unit_buff +
block_to_program * p_work->geometry.blk_size;
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_WRITE_EXEC;
return nrf_drv_qspi_write(p_src_address,
p_work->geometry.blk_size,
dst_address);
}
/*Erase is required*/
uint32_t address = (p_work->erase_unit_idx * NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE);
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_WRITE_ERASE;
p_work->erase_required = false;
return nrf_drv_qspi_erase(NRF_QSPI_ERASE_LEN_4KB, address);
}
static ret_code_t block_dev_qspi_eunit_write(nrf_block_dev_qspi_t const * p_qspi_dev,
nrf_block_req_t * p_blk_left)
{
nrf_block_dev_qspi_work_t * p_work = p_qspi_dev->p_work;
size_t blk = p_blk_left->blk_id %
BD_BLOCKS_PER_ERASEUNIT(p_work->geometry.blk_size);
size_t cnt = BD_BLOCKS_PER_ERASEUNIT(p_work->geometry.blk_size) - blk;
size_t off = p_work->geometry.blk_size * blk;
if (cnt > p_blk_left->blk_count)
{
cnt = p_blk_left->blk_count;
}
bool erase_required = block_dev_qspi_update_eunit(p_qspi_dev,
off,
p_blk_left->p_buff,
cnt * p_work->geometry.blk_size);
if (erase_required)
{
p_work->erase_required = true;
}
p_blk_left->blk_count -= cnt;
p_blk_left->blk_id += cnt;
p_blk_left->p_buff = (uint8_t *)p_blk_left->p_buff + cnt * p_work->geometry.blk_size;
if (p_work->erase_required)
{
uint32_t blk_size = p_work->geometry.blk_size;
p_work->erase_unit_dirty_blocks |= (1u << BD_BLOCKS_PER_ERASEUNIT(blk_size)) - 1;
}
if (p_work->erase_unit_dirty_blocks == 0 || p_work->writeback_mode)
{
/*No dirty blocks detected. Write end.*/
if (p_work->ev_handler && p_blk_left->blk_count == 0)
{
const nrf_block_dev_event_t ev = {
NRF_BLOCK_DEV_EVT_BLK_WRITE_DONE,
NRF_BLOCK_DEV_RESULT_SUCCESS,
&p_work->req,
p_work->p_context
};
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_IDLE;
p_work->ev_handler(&p_qspi_dev->block_dev, &ev);
return NRF_SUCCESS;
}
}
return block_dev_qspi_write_start(p_qspi_dev);
}
static ret_code_t block_dev_qspi_write_req(nrf_block_dev_t const * p_blk_dev,
nrf_block_req_t const * p_blk)
{
ASSERT(p_blk_dev);
ASSERT(p_blk);
nrf_block_dev_qspi_t const * p_qspi_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_qspi_t, block_dev);
nrf_block_dev_qspi_work_t * p_work = p_qspi_dev->p_work;
ret_code_t ret = NRF_SUCCESS;
NRF_LOG_INST_DEBUG(
p_qspi_dev->p_log,
"Write req to block %"PRIu32" size %"PRIu32"(x%"PRIu32") from %"PRIXPTR,
p_blk->blk_id,
p_blk->blk_count,
p_blk_dev->p_ops->geometry(p_blk_dev)->blk_size,
p_blk->p_buff);
if ((p_blk->blk_id + p_blk->blk_count) > p_work->geometry.blk_count)
{
NRF_LOG_INST_ERROR(
p_qspi_dev->p_log,
"Out of range write req block %"PRIu32" count %"PRIu32" while max is %"PRIu32,
p_blk->blk_id,
p_blk->blk_count,
p_blk_dev->p_ops->geometry(p_blk_dev)->blk_count);
return NRF_ERROR_INVALID_ADDR;
}
if (m_active_qspi_dev != p_qspi_dev)
{
/* QSPI instance is BUSY*/
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "Cannot write because QSPI is busy");
return NRF_ERROR_BUSY;
}
if (p_work->state != NRF_BLOCK_DEV_QSPI_STATE_IDLE)
{
/* Previous asynchronous operation in progress*/
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "Cannot write because of ongoing previous operation");
return NRF_ERROR_BUSY;
}
p_work->left_req = *p_blk;
p_work->req = *p_blk;
nrf_block_req_t * p_blk_left = &p_work->left_req;
uint32_t erase_unit = BD_BLOCK_TO_ERASEUNIT(p_blk_left->blk_id,
p_work->geometry.blk_size);
/* Check if block is in erase unit buffer*/
if (erase_unit == p_work->erase_unit_idx)
{
ret = block_dev_qspi_eunit_write(p_qspi_dev, p_blk_left);
}
else
{
if (p_work->writeback_mode)
{
ret = block_dev_qspi_write_start(p_qspi_dev);
}
else
{
p_work->erase_unit_idx = erase_unit;
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_EUNIT_LOAD;
ret = nrf_drv_qspi_read(p_work->p_erase_unit_buff,
NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE,
erase_unit * NRF_BLOCK_DEV_QSPI_ERASE_UNIT_SIZE);
}
}
if (ret != NRF_SUCCESS)
{
NRF_LOG_INST_ERROR(p_qspi_dev->p_log, "QSPI write error: %"PRIu32"", ret);
p_work->state = NRF_BLOCK_DEV_QSPI_STATE_IDLE;
return ret;
}
if (!p_work->ev_handler && (p_work->state != NRF_BLOCK_DEV_QSPI_STATE_IDLE))
{
/*Synchronous operation*/
wait_for_idle(p_qspi_dev);
}
return ret;
}
static ret_code_t block_dev_qspi_ioctl(nrf_block_dev_t const * p_blk_dev,
nrf_block_dev_ioctl_req_t req,
void * p_data)
{
ASSERT(p_blk_dev);
nrf_block_dev_qspi_t const * p_qspi_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_qspi_t, block_dev);
nrf_block_dev_qspi_work_t * p_work = p_qspi_dev->p_work;
switch (req)
{
case NRF_BLOCK_DEV_IOCTL_REQ_CACHE_FLUSH:
{
bool * p_flushing = p_data;
NRF_LOG_INST_DEBUG(p_qspi_dev->p_log, "IOCtl: Cache flush");
if (p_work->state != NRF_BLOCK_DEV_QSPI_STATE_IDLE)
{
return NRF_ERROR_BUSY;
}
if (!p_work->writeback_mode || p_work->erase_unit_dirty_blocks == 0)
{
if (p_flushing)
{
*p_flushing = false;
}
return NRF_SUCCESS;
}
ret_code_t ret = block_dev_qspi_write_start(p_qspi_dev);
if (ret == NRF_SUCCESS)
{
if (p_flushing)
{
*p_flushing = true;
}
p_work->cache_flushing = true;
}
return ret;
}
case NRF_BLOCK_DEV_IOCTL_REQ_INFO_STRINGS:
{
if (p_data == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
nrf_block_dev_info_strings_t const * * pp_strings = p_data;
*pp_strings = &p_qspi_dev->info_strings;
return NRF_SUCCESS;
}
default:
break;
}
return NRF_ERROR_NOT_SUPPORTED;
}
static nrf_block_dev_geometry_t const * block_dev_qspi_geometry(nrf_block_dev_t const * p_blk_dev)
{
ASSERT(p_blk_dev);
nrf_block_dev_qspi_t const * p_qspi_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_qspi_t, block_dev);
nrf_block_dev_qspi_work_t const * p_work = p_qspi_dev->p_work;
return &p_work->geometry;
}
const nrf_block_dev_ops_t nrf_block_device_qspi_ops = {
.init = block_dev_qspi_init,
.uninit = block_dev_qspi_uninit,
.read_req = block_dev_qspi_read_req,
.write_req = block_dev_qspi_write_req,
.ioctl = block_dev_qspi_ioctl,
.geometry = block_dev_qspi_geometry,
};
/** @} */
#endif // NRF_MODULE_ENABLED(NRF_BLOCK_DEV_QSPI)