xiaozhengsheng 6df0f7d96e 初始版本
2025-08-19 09:49:41 +08:00

270 lines
9.1 KiB
C

/**
* Copyright (c) 2016 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(NRF_BLOCK_DEV_EMPTY)
#include "nrf_block_dev_empty.h"
#include <inttypes.h>
/**@file
*
* @ingroup nrf_block_dev
* @{
*
* @brief This module implements block device API. It would behave like:
* - /dev/empty for write operations
* - /dev/zero for read operations
*/
#if NRF_BLOCK_DEV_EMPTY_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL NRF_BLOCK_DEV_EMPTY_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR NRF_BLOCK_DEV_EMPTY_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR NRF_BLOCK_DEV_EMPTY_CONFIG_DEBUG_COLOR
#else
#define NRF_LOG_LEVEL 0
#endif
#include "nrf_log.h"
static ret_code_t block_dev_empty_init(nrf_block_dev_t const * p_blk_dev,
nrf_block_dev_ev_handler ev_handler,
void const * p_context)
{
ASSERT(p_blk_dev);
nrf_block_dev_empty_t const * p_empty_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_empty_t, block_dev);
nrf_block_dev_empty_work_t * p_work = p_empty_dev->p_work;
NRF_LOG_INST_DEBUG(p_empty_dev->p_log, "Init.");
/* Calculate block device geometry.... */
p_work->geometry.blk_size = p_empty_dev->empty_config.block_size;
p_work->geometry.blk_count = p_empty_dev->empty_config.block_count;
p_work->p_context = p_context;
p_work->ev_handler = ev_handler;
if (p_work->ev_handler)
{
/*Asynchronous operation (simulation)*/
const nrf_block_dev_event_t ev = {
NRF_BLOCK_DEV_EVT_INIT,
NRF_BLOCK_DEV_RESULT_SUCCESS,
NULL,
p_work->p_context
};
p_work->ev_handler(p_blk_dev, &ev);
}
return NRF_SUCCESS;
}
static ret_code_t block_dev_empty_uninit(nrf_block_dev_t const * p_blk_dev)
{
ASSERT(p_blk_dev);
nrf_block_dev_empty_t const * p_empty_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_empty_t, block_dev);
nrf_block_dev_empty_work_t * p_work = p_empty_dev->p_work;
NRF_LOG_INST_DEBUG(p_empty_dev->p_log, "Uninit.");
if (p_work->ev_handler)
{
/*Asynchronous operation (simulation)*/
const nrf_block_dev_event_t ev = {
NRF_BLOCK_DEV_EVT_UNINIT,
NRF_BLOCK_DEV_RESULT_SUCCESS,
NULL,
p_work->p_context
};
p_work->ev_handler(p_blk_dev, &ev);
}
memset(p_work, 0, sizeof(nrf_block_dev_empty_work_t));
return NRF_SUCCESS;
}
static ret_code_t block_dev_empty_read_req(nrf_block_dev_t const * p_blk_dev,
nrf_block_req_t const * p_blk)
{
ASSERT(p_blk_dev);
ASSERT(p_blk);
nrf_block_dev_empty_t const * p_empty_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_empty_t, block_dev);
nrf_block_dev_empty_work_t * p_work = p_empty_dev->p_work;
NRF_LOG_INST_DEBUG(
p_empty_dev->p_log,
"Read req from block %"PRIu32" size %"PRIu32"(x%"PRIu32") to %"PRIXPTR,
p_blk->blk_id,
p_blk->blk_count,
p_blk_dev->p_ops->geometry(p_blk_dev)->blk_size,
p_blk->p_buff);
if ((p_blk->blk_id + p_blk->blk_count) > p_work->geometry.blk_count)
{
NRF_LOG_INST_ERROR(
p_empty_dev->p_log,
"Out of range read req block %"PRIu32" count %"PRIu32" while max is %"PRIu32,
p_blk->blk_id,
p_blk->blk_count,
p_blk_dev->p_ops->geometry(p_blk_dev)->blk_count);
return NRF_ERROR_INVALID_ADDR;
}
memset(p_blk->p_buff, 0, p_empty_dev->p_work->geometry.blk_size * p_blk->blk_count);
if (p_work->ev_handler)
{
/*Asynchronous operation (simulation)*/
const nrf_block_dev_event_t ev = {
NRF_BLOCK_DEV_EVT_BLK_READ_DONE,
NRF_BLOCK_DEV_RESULT_SUCCESS,
p_blk,
p_work->p_context
};
p_work->ev_handler(p_blk_dev, &ev);
}
return NRF_SUCCESS;
}
static ret_code_t block_dev_empty_write_req(nrf_block_dev_t const * p_blk_dev,
nrf_block_req_t const * p_blk)
{
ASSERT(p_blk_dev);
ASSERT(p_blk);
nrf_block_dev_empty_t const * p_empty_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_empty_t, block_dev);
nrf_block_dev_empty_work_t * p_work = p_empty_dev->p_work;
NRF_LOG_INST_DEBUG(
p_empty_dev->p_log,
"Write req to block %"PRIu32" size %"PRIu32"(x%"PRIu32") from %"PRIXPTR,
p_blk->blk_id,
p_blk->blk_count,
p_blk_dev->p_ops->geometry(p_blk_dev)->blk_size,
p_blk->p_buff);
if ((p_blk->blk_id + p_blk->blk_count) > p_work->geometry.blk_count)
{
NRF_LOG_INST_ERROR(
p_empty_dev->p_log,
"Out of range write req block %"PRIu32" count %"PRIu32" while max is %"PRIu32,
p_blk->blk_id,
p_blk->blk_count,
p_blk_dev->p_ops->geometry(p_blk_dev)->blk_count);
return NRF_ERROR_INVALID_ADDR;
}
if (p_work->ev_handler)
{
/*Asynchronous operation (simulation)*/
const nrf_block_dev_event_t ev = {
NRF_BLOCK_DEV_EVT_BLK_WRITE_DONE,
NRF_BLOCK_DEV_RESULT_SUCCESS,
p_blk,
p_work->p_context
};
p_work->ev_handler(p_blk_dev, &ev);
}
return NRF_SUCCESS;
}
static ret_code_t block_dev_empty_ioctl(nrf_block_dev_t const * p_blk_dev,
nrf_block_dev_ioctl_req_t req, void * p_data)
{
nrf_block_dev_empty_t const * p_empty_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_empty_t, block_dev);
switch (req)
{
case NRF_BLOCK_DEV_IOCTL_REQ_CACHE_FLUSH:
{
bool * p_flushing = p_data;
NRF_LOG_INST_DEBUG(p_empty_dev, "IOCtl: Cache flush");
if (p_flushing)
{
*p_flushing = false;
}
return NRF_SUCCESS;
}
case NRF_BLOCK_DEV_IOCTL_REQ_INFO_STRINGS:
{
if (p_data == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
nrf_block_dev_info_strings_t const * * pp_strings = p_data;
*pp_strings = &p_empty_dev->info_strings;
return NRF_SUCCESS;
}
default:
break;
}
return NRF_ERROR_NOT_SUPPORTED;
}
static nrf_block_dev_geometry_t const * block_dev_empty_geometry(nrf_block_dev_t const * p_blk_dev)
{
ASSERT(p_blk_dev);
nrf_block_dev_empty_t const * p_empty_dev =
CONTAINER_OF(p_blk_dev, nrf_block_dev_empty_t, block_dev);
nrf_block_dev_empty_work_t const * p_work = p_empty_dev->p_work;
return &p_work->geometry;
}
const nrf_block_dev_ops_t nrf_block_device_empty_ops = {
.init = block_dev_empty_init,
.uninit = block_dev_empty_uninit,
.read_req = block_dev_empty_read_req,
.write_req = block_dev_empty_write_req,
.ioctl = block_dev_empty_ioctl,
.geometry = block_dev_empty_geometry,
};
/** @} */
#endif // NRF_MODULE_ENABLED(NRF_BLOCK_DEV_EMPTY)