xiaozhengsheng 6df0f7d96e 初始版本
2025-08-19 09:49:41 +08:00

270 lines
10 KiB
C

/**
* Copyright (c) 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "nrf21540_spi.h"
#include <string.h>
#include "nrf_assert.h"
#include "boards.h"
#include "nrf_ppi.h"
#include "nrf21540_defs.h"
#include "nrf_timer.h"
#if NRF21540_USE_SPI_MANAGEMENT
static uint8_t m_spi_tx_data[NRF21540_SPI_LENGTH_BYTES]; ///< SPI tx buffer.
static uint8_t m_spi_rx_data[NRF21540_SPI_LENGTH_BYTES]; ///< SPI rx buffer.
static volatile bool m_spi_xfer_done; ///< Flag indicates that SPI completed the transfer.
/**@brief Structure keeps content of important registers of nRF21540.
*
* @details Driver keeps this data because it needs to operate at single bits
* included in these registers (otherwise it should read it content
* during every operation).
*/
static struct {
uint8_t CONFREG0; ///< CONFREG0 register's content.
uint8_t CONFREG1; ///< CONFREG1 register's content.
} m_confreg_statics;
static const nrfx_spim_t spi = NRFX_SPIM_INSTANCE(NRF21540_SPIM_NO); /**< SPI instance. */
/**@brief Function waits for SPI transfer has finished
*
* @details Used in blocking mode transfer
*/
static inline void wait_for_transfer_end(void)
{
while (!m_spi_xfer_done)
{}
m_spi_xfer_done = false;
}
/**@brief Handler called by nrfx driver when SPI event occurs.
*
* @param[in] p_event Event which triggers the handler.
* @param[in] p_context Context.
*/
static void spim_event_handler(nrfx_spim_evt_t const *p_event, void *p_context)
{
m_spi_xfer_done = true;
}
/**@brief Function reads the content of nRF21540 chip register.
*
* @details Preparation of read register operation. Every register has one byte size.
*
* @param[in] reg Register address to read.
* @param[in] mode if NRF21540_EXEC_MODE_BLOCKING the function will wait for data
* received.
* @param[in] start_now if enabled, transmision immediately initialized,
* otherwise transfer will be triggered by external event.
*/
static uint8_t spi_reg_read(nrf21540_reg_t reg, nrf21540_execution_mode_t mode, bool start_now)
{
ASSERT(!(mode == NRF21540_EXEC_MODE_BLOCKING && start_now == false));
nrfx_spim_xfer_desc_t xfer_desc = NRFX_SPIM_XFER_TRX(m_spi_tx_data,
NRF21540_SPI_LENGTH_BYTES,
m_spi_rx_data,
NRF21540_SPI_LENGTH_BYTES);
m_spi_tx_data[NRF21540_SPI_COMMAND_ADDR_BYTE] =
(NRF21540_SPI_COMMAND_READ << NRF21540_SPI_COMMAND_Pos) | (reg << NRF21540_SPI_REG_Pos);
(void)nrfx_spim_xfer(&spi, &xfer_desc, 0);
if (mode == NRF21540_EXEC_MODE_BLOCKING)
{
wait_for_transfer_end();
}
return m_spi_rx_data[NRF21540_SPI_DATA_BYTE];
}
/**@brief Function writes the content of nRF21540 chip register.
*
* @details Preparation of data to send. Every register has one byte size.
*
* @param[in] reg Register address to write.
* @param[in] data Data to write.
* @param[in] mode if NRF21540_EXEC_MODE_BLOCKING the function will wait for transfer
* finished after sending data.
* @param[in] start_now if enabled, transmision immediately initialized,
* otherwise transfer will be triggered by external event.
*/
static void spi_reg_write(nrf21540_reg_t reg, uint8_t data, nrf21540_execution_mode_t mode, bool start_now)
{
ASSERT(!(mode == NRF21540_EXEC_MODE_BLOCKING && start_now == false));
nrfx_spim_xfer_desc_t xfer_desc = NRFX_SPIM_XFER_TRX(m_spi_tx_data,
NRF21540_SPI_LENGTH_BYTES,
m_spi_rx_data,
NRF21540_SPI_LENGTH_BYTES);
m_spi_tx_data[NRF21540_SPI_COMMAND_ADDR_BYTE] =
(NRF21540_SPI_COMMAND_WRITE << NRF21540_SPI_COMMAND_Pos) | (reg << NRF21540_SPI_REG_Pos);
m_spi_tx_data[NRF21540_SPI_DATA_BYTE] = data;
uint32_t flags = start_now ? 0 : NRFX_SPIM_FLAG_HOLD_XFER;
(void)nrfx_spim_xfer(&spi, &xfer_desc, flags);
if (mode == NRF21540_EXEC_MODE_BLOCKING)
{
wait_for_transfer_end();
}
}
/**@brief Function reads content of important nRF21540's registers and stores
* it to dedicated structure (@ref m_confreg_statics).
*
* @return Return NRF based error code.
*/
static ret_code_t m_confreg_statics_content_update(void)
{
ret_code_t ret = nrf21540_pdn_drive(true, NRF21540_EXEC_MODE_BLOCKING);
if (ret != NRF_SUCCESS)
{
return ret;
}
m_confreg_statics.CONFREG0 = spi_reg_read(NRF21540_REG_CONFREG0,
NRF21540_EXEC_MODE_BLOCKING, true);
m_confreg_statics.CONFREG1 = spi_reg_read(NRF21540_REG_CONFREG1,
NRF21540_EXEC_MODE_BLOCKING, true);
return nrf21540_pdn_drive(false, NRF21540_EXEC_MODE_BLOCKING);
}
ret_code_t nrf21540_spi_init(void)
{
ret_code_t ret;
nrfx_spim_config_t spi_config = NRFX_SPIM_DEFAULT_CONFIG;
spi_config.frequency = NRF_SPIM_FREQ_4M;
spi_config.ss_pin = NRF21540_CS_PIN;
spi_config.miso_pin = NRF21540_MISO_PIN;
spi_config.mosi_pin = NRF21540_MOSI_PIN;
spi_config.sck_pin = NRF21540_CLK_PIN;
spi_config.ss_active_high = false;
ret = nrfx_spim_init(&spi, &spi_config, spim_event_handler, NULL);
if (ret != NRFX_SUCCESS)
{
return NRF_ERROR_INTERNAL;
}
return m_confreg_statics_content_update();
}
/**@brief Function enables or disables nRF21540 TX mode.
*
* @details Preparation of appropriate register content and tranfer initialization.
*
* @param[in] state NRF21540_DISABLE/NRF21540_ENABLE causes TX mode disabled/enabled.
*/
static void tx_en_drive(nrf21540_bool_state_t state)
{
uint8_t reg_val;
if (state == NRF21540_ENABLE)
{
reg_val = m_confreg_statics.CONFREG0 | NRF21540_BITS_CONFREG0_TX_EN_Enable;
}
else
{
reg_val = m_confreg_statics.CONFREG0 &(~NRF21540_BITS_CONFREG0_TX_EN_Enable);
}
spi_reg_write(NRF21540_REG_CONFREG0, reg_val, NRF21540_EXEC_MODE_NON_BLOCKING, false);
}
/**@brief Function enables or disables nRF21540 RX mode.
*
* @details Preparation of appropriate register content and tranfer initialization.
*
* @param[in] state NRF21540_DISABLE/NRF21540_ENABLE causes RX mode disabled/enabled.
*/
static void rx_en_drive(nrf21540_bool_state_t state)
{
uint8_t reg_val;
if (state == NRF21540_ENABLE)
{
reg_val = m_confreg_statics.CONFREG1 | NRF21540_BITS_CONFREG1_RX_EN_Enable;
}
else
{
reg_val = m_confreg_statics.CONFREG1 &(~NRF21540_BITS_CONFREG1_RX_EN_Disable);
}
spi_reg_write(NRF21540_REG_CONFREG1, reg_val, NRF21540_EXEC_MODE_NON_BLOCKING, false);
}
inline uint32_t nrf21540_spim_trx_task_start_address_get(void)
{
return nrfx_spim_start_task_get(&spi);
}
void nrf21540_spim_for_trx_configure(nrf21540_trx_t dir, nrf21540_bool_state_t required_state)
{
if (dir == NRF21540_TX)
{
tx_en_drive(required_state);
}
else
{
rx_en_drive(required_state);
}
if (required_state == NRF21540_ENABLE)
{
uint32_t task_start_address = nrfx_spim_start_task_get(&spi);
nrf_ppi_channel_endpoint_setup(NRF21540_TRX_PPI_CHANNEL,
(uint32_t)nrf_timer_event_address_get(NRF21540_TIMER,
NRF21540_TIMER_CC_PD_PG_EVENT),
task_start_address);
nrf_ppi_channel_enable(NRF21540_TRX_PPI_CHANNEL);
}
}
ret_code_t nrf21540_spi_pwr_mode_set(nrf21540_pwr_mode_t mode)
{
if (mode == NRF21540_PWR_MODE_A)
{
spi_reg_write(NRF21540_REG_CONFREG0, NRF21540_BITS_CONFREG0_MODE_0,
NRF21540_EXEC_MODE_BLOCKING, true);
}
else if (mode == NRF21540_PWR_MODE_B)
{
spi_reg_write(NRF21540_REG_CONFREG0, NRF21540_BITS_CONFREG0_MODE_1,
NRF21540_EXEC_MODE_BLOCKING, true);
}
else
{
return NRF_ERROR_INVALID_PARAM;
}
return NRF_SUCCESS;
}
#endif /*NRF21540_USE_SPI_MANAGEMENT*/