xiaozhengsheng 6df0f7d96e 初始版本
2025-08-19 09:49:41 +08:00

759 lines
24 KiB
C

/**
* Copyright (c) 2015 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(PEER_MANAGER)
#include "id_manager.h"
#include <string.h>
#include "ble.h"
#include "ble_gap.h"
#include "ble_err.h"
#include "peer_manager_types.h"
#include "peer_database.h"
#include "peer_data_storage.h"
#include "nrf_soc.h"
#include "ble_conn_state.h"
#define NRF_LOG_MODULE_NAME peer_manager_im
#if PM_LOG_ENABLED
#define NRF_LOG_LEVEL PM_LOG_LEVEL
#define NRF_LOG_INFO_COLOR PM_LOG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR PM_LOG_DEBUG_COLOR
#else
#define NRF_LOG_LEVEL 0
#endif // PM_LOG_ENABLED
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
NRF_LOG_MODULE_REGISTER();
#define IM_MAX_CONN_HANDLES (20)
#define IM_NO_INVALID_CONN_HANDLES (0xFF)
#define IM_ADDR_CLEARTEXT_LENGTH (3)
#define IM_ADDR_CIPHERTEXT_LENGTH (3)
// The number of registered event handlers.
#define IM_EVENT_HANDLERS_CNT (sizeof(m_evt_handlers) / sizeof(m_evt_handlers[0]))
// Identity Manager event handlers in Peer Manager and GATT Cache Manager.
extern void pm_im_evt_handler(pm_evt_t * p_event);
extern void gcm_im_evt_handler(pm_evt_t * p_event);
// Identity Manager events' handlers.
// The number of elements in this array is IM_EVENT_HANDLERS_CNT.
static pm_evt_handler_internal_t const m_evt_handlers[] =
{
pm_im_evt_handler,
gcm_im_evt_handler
};
typedef struct
{
pm_peer_id_t peer_id;
ble_gap_addr_t peer_address;
} im_connection_t;
static im_connection_t m_connections[IM_MAX_CONN_HANDLES];
static uint8_t m_wlisted_peer_cnt;
static pm_peer_id_t m_wlisted_peers[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
/**@brief Function for sending an event to all registered event handlers.
*
* @param[in] p_event The event to distribute.
*/
static void evt_send(pm_evt_t * p_event)
{
for (uint32_t i = 0; i < IM_EVENT_HANDLERS_CNT; i++)
{
m_evt_handlers[i](p_event);
}
}
/**@brief Function checking the validity of an IRK
*
* @detail An all-zero IRK is not valid. This function will check if a given IRK is valid.
*
* @param[in] p_irk The IRK for which the validity is going to be checked.
*
* @retval true The IRK is valid.
* @retval false The IRK is invalid.
*/
bool is_valid_irk(ble_gap_irk_t const * p_irk)
{
NRF_PM_DEBUG_CHECK(p_irk != NULL);
for (uint32_t i = 0; i < BLE_GAP_SEC_KEY_LEN; i++)
{
if (p_irk->irk[i] != 0)
{
return true;
}
}
return false;
}
/**@brief Function for comparing two addresses to determine if they are identical
*
* @note The address type need to be identical, as well as every bit in the address itself.
*
* @param[in] p_addr1 The first address to be compared.
* @param[in] p_addr2 The second address to be compared.
*
* @retval true The addresses are identical.
* @retval false The addresses are not identical.
*/
bool addr_compare(ble_gap_addr_t const * p_addr1, ble_gap_addr_t const * p_addr2)
{
// @note emdi: use NRF_PM_DEBUG_CHECK ?
if ((p_addr1 == NULL) || (p_addr2 == NULL))
{
return false;
}
// Check that the addr type is identical, return false if it is not
if (p_addr1->addr_type != p_addr2->addr_type)
{
return false;
}
// Check if the addr bytes are is identical
return (memcmp(p_addr1->addr, p_addr2->addr, BLE_GAP_ADDR_LEN) == 0);
}
void im_ble_evt_handler(ble_evt_t const * ble_evt)
{
ble_gap_evt_t gap_evt;
pm_peer_id_t bonded_matching_peer_id;
if (ble_evt->header.evt_id != BLE_GAP_EVT_CONNECTED)
{
// Nothing to do.
return;
}
gap_evt = ble_evt->evt.gap_evt;
bonded_matching_peer_id = PM_PEER_ID_INVALID;
if ( gap_evt.params.connected.peer_addr.addr_type
!= BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE)
{
/* Search the database for bonding data matching the one that triggered the event.
* Public and static addresses can be matched on address alone, while resolvable
* random addresses can be resolved agains known IRKs. Non-resolvable random addresses
* are never matching because they are not longterm form of identification.
*/
pm_peer_id_t peer_id;
pm_peer_data_flash_t peer_data;
pds_peer_data_iterate_prepare();
switch (gap_evt.params.connected.peer_addr.addr_type)
{
case BLE_GAP_ADDR_TYPE_PUBLIC:
case BLE_GAP_ADDR_TYPE_RANDOM_STATIC:
{
while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data))
{
if (addr_compare(&gap_evt.params.connected.peer_addr,
&peer_data.p_bonding_data->peer_ble_id.id_addr_info))
{
bonded_matching_peer_id = peer_id;
break;
}
}
}
break;
case BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE:
{
while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data))
{
if (im_address_resolve(&gap_evt.params.connected.peer_addr,
&peer_data.p_bonding_data->peer_ble_id.id_info))
{
bonded_matching_peer_id = peer_id;
break;
}
}
}
break;
default:
NRF_PM_DEBUG_CHECK(false);
break;
}
}
m_connections[gap_evt.conn_handle].peer_id = bonded_matching_peer_id;
m_connections[gap_evt.conn_handle].peer_address = gap_evt.params.connected.peer_addr;
if (bonded_matching_peer_id != PM_PEER_ID_INVALID)
{
// Send a bonded peer event
pm_evt_t im_evt;
im_evt.conn_handle = gap_evt.conn_handle;
im_evt.peer_id = bonded_matching_peer_id;
im_evt.evt_id = PM_EVT_BONDED_PEER_CONNECTED;
evt_send(&im_evt);
}
}
/**@brief Function to compare two sets of bonding data to check if they belong to the same device.
* @note Invalid irks will never match even though they are identical.
*
* @param[in] p_bonding_data1 First bonding data for comparison
* @param[in] p_bonding_data2 Second bonding data for comparison
*
* @return True if the input matches, false if it does not.
*/
bool im_is_duplicate_bonding_data(pm_peer_data_bonding_t const * p_bonding_data1,
pm_peer_data_bonding_t const * p_bonding_data2)
{
NRF_PM_DEBUG_CHECK(p_bonding_data1 != NULL);
NRF_PM_DEBUG_CHECK(p_bonding_data2 != NULL);
ble_gap_addr_t const * p_addr1 = &p_bonding_data1->peer_ble_id.id_addr_info;
ble_gap_addr_t const * p_addr2 = &p_bonding_data2->peer_ble_id.id_addr_info;
bool duplicate_irk = ((memcmp(p_bonding_data1->peer_ble_id.id_info.irk,
p_bonding_data2->peer_ble_id.id_info.irk,
BLE_GAP_SEC_KEY_LEN) == 0)
&& is_valid_irk(&p_bonding_data1->peer_ble_id.id_info)
&& is_valid_irk(&p_bonding_data2->peer_ble_id.id_info));
bool duplicate_addr = addr_compare(p_addr1, p_addr2);
bool id_addrs = ((p_addr1->addr_type != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE)
&& (p_addr1->addr_type != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE)
&& (p_addr2->addr_type != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE)
&& (p_addr2->addr_type != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_NON_RESOLVABLE));
return (duplicate_addr && id_addrs) || (duplicate_irk && !id_addrs);
}
pm_peer_id_t im_find_duplicate_bonding_data(pm_peer_data_bonding_t const * p_bonding_data,
pm_peer_id_t peer_id_skip)
{
pm_peer_id_t peer_id;
pm_peer_data_flash_t peer_data_duplicate;
NRF_PM_DEBUG_CHECK(p_bonding_data != NULL);
pds_peer_data_iterate_prepare();
while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data_duplicate))
{
if ( (peer_id != peer_id_skip)
&& im_is_duplicate_bonding_data(p_bonding_data,
peer_data_duplicate.p_bonding_data))
{
return peer_id;
}
}
return PM_PEER_ID_INVALID;
}
pm_peer_id_t im_peer_id_get_by_conn_handle(uint16_t conn_handle)
{
if ((conn_handle >= IM_MAX_CONN_HANDLES) || !ble_conn_state_valid(conn_handle))
{
return PM_PEER_ID_INVALID;
}
return m_connections[conn_handle].peer_id;
}
ret_code_t im_ble_addr_get(uint16_t conn_handle, ble_gap_addr_t * p_ble_addr)
{
NRF_PM_DEBUG_CHECK(p_ble_addr != NULL);
if ((conn_handle >= IM_MAX_CONN_HANDLES) || !ble_conn_state_valid(conn_handle))
{
return BLE_ERROR_INVALID_CONN_HANDLE;
}
*p_ble_addr = m_connections[conn_handle].peer_address;
return NRF_SUCCESS;
}
bool im_master_ids_compare(ble_gap_master_id_t const * p_master_id1,
ble_gap_master_id_t const * p_master_id2)
{
NRF_PM_DEBUG_CHECK(p_master_id1 != NULL);
NRF_PM_DEBUG_CHECK(p_master_id2 != NULL);
if (!im_master_id_is_valid(p_master_id1))
{
return false;
}
if (p_master_id1->ediv != p_master_id2->ediv)
{
return false;
}
return (memcmp(p_master_id1->rand, p_master_id2->rand, BLE_GAP_SEC_RAND_LEN) == 0);
}
pm_peer_id_t im_peer_id_get_by_master_id(ble_gap_master_id_t const * p_master_id)
{
pm_peer_id_t peer_id;
pm_peer_data_flash_t peer_data;
NRF_PM_DEBUG_CHECK(p_master_id != NULL);
pds_peer_data_iterate_prepare();
// For each stored peer, check if the master_id matches p_master_id
while (pds_peer_data_iterate(PM_PEER_DATA_ID_BONDING, &peer_id, &peer_data))
{
if (im_master_ids_compare(p_master_id, &peer_data.p_bonding_data->own_ltk.master_id) ||
im_master_ids_compare(p_master_id, &peer_data.p_bonding_data->peer_ltk.master_id))
{
// If a matching master ID is found then return the peer ID.
return peer_id;
}
}
// If no matching master ID is found return PM_PEER_ID_INVALID.
return PM_PEER_ID_INVALID;
}
uint16_t im_conn_handle_get(pm_peer_id_t peer_id)
{
if (peer_id == PM_PEER_ID_INVALID)
{
return BLE_CONN_HANDLE_INVALID;
}
for (uint16_t conn_handle = 0; conn_handle < IM_MAX_CONN_HANDLES; conn_handle++)
{
if ((m_connections[conn_handle].peer_id == peer_id) && ble_conn_state_valid(conn_handle))
{
return conn_handle;
}
}
return BLE_CONN_HANDLE_INVALID;
}
bool im_master_id_is_valid(ble_gap_master_id_t const * p_master_id)
{
if (p_master_id->ediv != 0)
{
return true;
}
for (uint32_t i = 0; i < BLE_GAP_SEC_RAND_LEN; i++)
{
if (p_master_id->rand[i] != 0)
{
return true;
}
}
return false;
}
void im_new_peer_id(uint16_t conn_handle, pm_peer_id_t peer_id)
{
if (conn_handle < IM_MAX_CONN_HANDLES)
{
m_connections[conn_handle].peer_id = peer_id;
}
}
ret_code_t im_peer_free(pm_peer_id_t peer_id)
{
uint16_t conn_handle;
ret_code_t ret;
conn_handle = im_conn_handle_get(peer_id);
ret = pdb_peer_free(peer_id);
if (ret == NRF_SUCCESS && (conn_handle < IM_MAX_CONN_HANDLES))
{
m_connections[conn_handle].peer_id = PM_PEER_ID_INVALID;
}
return ret;
}
/**@brief Given a list of peers, loads their GAP address and IRK into the provided buffers.
*/
static ret_code_t peers_id_keys_get(pm_peer_id_t const * p_peers,
uint32_t peer_cnt,
ble_gap_addr_t * p_gap_addrs,
uint32_t * p_addr_cnt,
ble_gap_irk_t * p_gap_irks,
uint32_t * p_irk_cnt)
{
ret_code_t ret;
pm_peer_data_bonding_t bond_data;
pm_peer_data_t peer_data;
uint32_t const buf_size = sizeof(bond_data);
bool copy_addrs = false;
bool copy_irks = false;
NRF_PM_DEBUG_CHECK(p_peers != NULL);
// One of these two has to be provided.
NRF_PM_DEBUG_CHECK((p_gap_addrs != NULL) || (p_gap_irks != NULL));
if ((p_gap_addrs != NULL) && (p_addr_cnt != NULL))
{
NRF_PM_DEBUG_CHECK((*p_addr_cnt) >= peer_cnt);
copy_addrs = true;
*p_addr_cnt = 0;
}
if ((p_gap_irks != NULL) && (p_irk_cnt != NULL))
{
NRF_PM_DEBUG_CHECK((*p_irk_cnt) >= peer_cnt);
copy_irks = true;
*p_irk_cnt = 0;
}
memset(&peer_data, 0x00, sizeof(peer_data));
peer_data.p_bonding_data = &bond_data;
// Read through flash memory and look for peers ID keys.
for (uint32_t i = 0; i < peer_cnt; i++)
{
memset(&bond_data, 0x00, sizeof(bond_data));
// Read peer data from flash.
ret = pds_peer_data_read(p_peers[i], PM_PEER_DATA_ID_BONDING,
&peer_data, &buf_size);
if ((ret == NRF_ERROR_NOT_FOUND) || (ret == NRF_ERROR_INVALID_PARAM))
{
// Peer data coulnd't be found in flash or peer ID is not valid.
return NRF_ERROR_NOT_FOUND;
}
uint8_t const addr_type = bond_data.peer_ble_id.id_addr_info.addr_type;
if ((addr_type != BLE_GAP_ADDR_TYPE_PUBLIC) &&
(addr_type != BLE_GAP_ADDR_TYPE_RANDOM_STATIC))
{
// The address shared by the peer during bonding can't be used for whitelisting.
return BLE_ERROR_GAP_INVALID_BLE_ADDR;
}
// Copy the GAP address.
if (copy_addrs)
{
memcpy(&p_gap_addrs[i], &bond_data.peer_ble_id.id_addr_info, sizeof(ble_gap_addr_t));
(*p_addr_cnt)++;
}
// Copy the IRK.
if (copy_irks)
{
memcpy(&p_gap_irks[i], bond_data.peer_ble_id.id_info.irk, BLE_GAP_SEC_KEY_LEN);
(*p_irk_cnt)++;
}
}
return NRF_SUCCESS;
}
ret_code_t im_device_identities_list_set(pm_peer_id_t const * p_peers,
uint32_t peer_cnt)
{
ret_code_t ret;
pm_peer_data_t peer_data;
pm_peer_data_bonding_t bond_data;
ble_gap_id_key_t keys[BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT];
ble_gap_id_key_t const * key_ptrs[BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT];
if (peer_cnt > BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT)
{
return NRF_ERROR_INVALID_PARAM;
}
if ((p_peers == NULL) || (peer_cnt == 0))
{
// Clear the device identities list.
return sd_ble_gap_device_identities_set(NULL, NULL, 0);
}
peer_data.p_bonding_data = &bond_data;
uint32_t const buf_size = sizeof(bond_data);
memset(keys, 0x00, sizeof(keys));
for (uint32_t i = 0; i < BLE_GAP_DEVICE_IDENTITIES_MAX_COUNT; i++)
{
key_ptrs[i] = &keys[i];
}
for (uint32_t i = 0; i < peer_cnt; i++)
{
memset(&bond_data, 0x00, sizeof(bond_data));
// Read peer data from flash.
ret = pds_peer_data_read(p_peers[i], PM_PEER_DATA_ID_BONDING,
&peer_data, &buf_size);
if ((ret == NRF_ERROR_NOT_FOUND) || (ret == NRF_ERROR_INVALID_PARAM))
{
NRF_LOG_WARNING("peer id %d: Peer data could not be found in flash. Remove the peer ID "
"from the peer list and try again.",
p_peers[i]);
return NRF_ERROR_NOT_FOUND;
}
uint8_t const addr_type = bond_data.peer_ble_id.id_addr_info.addr_type;
if ((addr_type != BLE_GAP_ADDR_TYPE_PUBLIC) &&
(addr_type != BLE_GAP_ADDR_TYPE_RANDOM_STATIC))
{
NRF_LOG_WARNING("peer id %d: The address shared by the peer during bonding cannot be "
"whitelisted. Remove the peer ID from the peer list and try again.",
p_peers[i]);
return BLE_ERROR_GAP_INVALID_BLE_ADDR;
}
// Copy data to the buffer.
memcpy(&keys[i], &bond_data.peer_ble_id, sizeof(ble_gap_id_key_t));
}
return sd_ble_gap_device_identities_set(key_ptrs, NULL, peer_cnt);
}
ret_code_t im_id_addr_set(ble_gap_addr_t const * p_addr)
{
return sd_ble_gap_addr_set(p_addr);
}
ret_code_t im_id_addr_get(ble_gap_addr_t * p_addr)
{
NRF_PM_DEBUG_CHECK(p_addr != NULL);
return sd_ble_gap_addr_get(p_addr);
}
ret_code_t im_privacy_set(pm_privacy_params_t const * p_privacy_params)
{
return sd_ble_gap_privacy_set(p_privacy_params);
}
ret_code_t im_privacy_get(pm_privacy_params_t * p_privacy_params)
{
return sd_ble_gap_privacy_get(p_privacy_params);
}
/* Create a whitelist for the user using the cached list of peers.
* This whitelist is meant to be provided by the application to the Advertising module.
*/
ret_code_t im_whitelist_get(ble_gap_addr_t * p_addrs,
uint32_t * p_addr_cnt,
ble_gap_irk_t * p_irks,
uint32_t * p_irk_cnt)
{
// One of the two buffers has to be provided.
NRF_PM_DEBUG_CHECK((p_addrs != NULL) || (p_irks != NULL));
NRF_PM_DEBUG_CHECK((p_addr_cnt != NULL) || (p_irk_cnt != NULL));
if (((p_addr_cnt != NULL) && (m_wlisted_peer_cnt > *p_addr_cnt)) ||
((p_irk_cnt != NULL) && (m_wlisted_peer_cnt > *p_irk_cnt)))
{
// The size of the cached list of peers is larger than the provided buffers.
return NRF_ERROR_NO_MEM;
}
// NRF_SUCCESS or
// NRF_ERROR_NOT_FOUND, if a peer or its data were not found.
// BLE_ERROR_GAP_INVALID_BLE_ADDR, if a peer address can not be used for whitelisting.
return peers_id_keys_get(m_wlisted_peers, m_wlisted_peer_cnt,
p_addrs, p_addr_cnt,
p_irks, p_irk_cnt);
}
/* Copies the peers to whitelist into a local cache.
* The cached list will be used by im_whitelist_get() to retrieve the active whitelist.
* For SoftDevices 3x, also loads the peers' GAP addresses and whitelists them using
* sd_ble_gap_whitelist_set().
*/
ret_code_t im_whitelist_set(pm_peer_id_t const * p_peers,
uint32_t peer_cnt)
{
// Clear the cache of whitelisted peers.
memset(m_wlisted_peers, 0x00, sizeof(m_wlisted_peers));
if ((p_peers == NULL) || (peer_cnt == 0))
{
// Clear the current whitelist.
m_wlisted_peer_cnt = 0;
// NRF_SUCCESS, or
// BLE_GAP_ERROR_WHITELIST_IN_USE
return sd_ble_gap_whitelist_set(NULL, 0);
}
// Copy the new whitelisted peers.
m_wlisted_peer_cnt = peer_cnt;
memcpy(m_wlisted_peers, p_peers, sizeof(pm_peer_id_t) * peer_cnt);
ret_code_t ret;
uint32_t wlist_addr_cnt = 0;
ble_gap_addr_t const * addr_ptrs[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
ble_gap_addr_t addrs[BLE_GAP_WHITELIST_ADDR_MAX_COUNT];
memset(addrs, 0x00, sizeof(addrs));
// Fetch GAP addresses for these peers, but don't fetch IRKs.
ret = peers_id_keys_get(p_peers, peer_cnt, addrs, &wlist_addr_cnt, NULL, NULL);
if (ret != NRF_SUCCESS)
{
// NRF_ERROR_NOT_FOUND, if a peer or its data were not found.
// BLE_ERROR_GAP_INVALID_BLE_ADDR, if a peer address can not be used for whitelisting.
return ret;
}
for (uint32_t i = 0; i < BLE_GAP_WHITELIST_ADDR_MAX_COUNT; i++)
{
addr_ptrs[i] = &addrs[i];
}
// NRF_ERROR_DATA_SIZE, if peer_cnt > BLE_GAP_WHITELIST_ADDR_MAX_COUNT.
// BLE_ERROR_GAP_WHITELIST_IN_USE, if a whitelist is in use.
return sd_ble_gap_whitelist_set(addr_ptrs, peer_cnt);
}
/**@brief Function for calculating the ah() hash function described in Bluetooth core specification
* 4.2 section 3.H.2.2.2.
*
* @detail BLE uses a hash function to calculate the first half of a resolvable address
* from the second half of the address and an irk. This function will use the ECB
* periferal to hash these data acording to the Bluetooth core specification.
*
* @note The ECB expect little endian input and output.
* This function expect big endian and will reverse the data as necessary.
*
* @param[in] p_k The key used in the hash function.
* For address resolution this is should be the irk.
* The array must have a length of 16.
* @param[in] p_r The rand used in the hash function. For generating a new address
* this would be a random number. For resolving a resolvable address
* this would be the last half of the address being resolved.
* The array must have a length of 3.
* @param[out] p_local_hash The result of the hash operation. For address resolution this
* will match the first half of the address being resolved if and only
* if the irk used in the hash function is the same one used to generate
* the address.
* The array must have a length of 16.
*/
void ah(uint8_t const * p_k, uint8_t const * p_r, uint8_t * p_local_hash)
{
nrf_ecb_hal_data_t ecb_hal_data;
for (uint32_t i = 0; i < SOC_ECB_KEY_LENGTH; i++)
{
ecb_hal_data.key[i] = p_k[SOC_ECB_KEY_LENGTH - 1 - i];
}
memset(ecb_hal_data.cleartext, 0, SOC_ECB_KEY_LENGTH - IM_ADDR_CLEARTEXT_LENGTH);
for (uint32_t i = 0; i < IM_ADDR_CLEARTEXT_LENGTH; i++)
{
ecb_hal_data.cleartext[SOC_ECB_KEY_LENGTH - 1 - i] = p_r[i];
}
// Can only return NRF_SUCCESS.
(void) sd_ecb_block_encrypt(&ecb_hal_data);
for (uint32_t i = 0; i < IM_ADDR_CIPHERTEXT_LENGTH; i++)
{
p_local_hash[i] = ecb_hal_data.ciphertext[SOC_ECB_KEY_LENGTH - 1 - i];
}
}
bool im_address_resolve(ble_gap_addr_t const * p_addr, ble_gap_irk_t const * p_irk)
{
uint8_t hash[IM_ADDR_CIPHERTEXT_LENGTH];
uint8_t local_hash[IM_ADDR_CIPHERTEXT_LENGTH];
uint8_t prand[IM_ADDR_CLEARTEXT_LENGTH];
if (p_addr->addr_type != BLE_GAP_ADDR_TYPE_RANDOM_PRIVATE_RESOLVABLE)
{
return false;
}
memcpy(hash, p_addr->addr, IM_ADDR_CIPHERTEXT_LENGTH);
memcpy(prand, &p_addr->addr[IM_ADDR_CIPHERTEXT_LENGTH], IM_ADDR_CLEARTEXT_LENGTH);
ah(p_irk->irk, prand, local_hash);
return (memcmp(hash, local_hash, IM_ADDR_CIPHERTEXT_LENGTH) == 0);
}
#endif // NRF_MODULE_ENABLED(PEER_MANAGER)