xiaozhengsheng 6df0f7d96e 初始版本
2025-08-19 09:49:41 +08:00

607 lines
25 KiB
C

/**
* Copyright (c) 2016 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdbool.h>
#include <stdint.h>
#include "es_security.h"
#include "app_timer.h"
#include "es_flash.h"
#include "es_stopwatch.h"
#include "fds.h"
#include "modes.h"
#include "nrf_crypto.h"
#include "nrf_soc.h"
#define NONCE_SIZE (6)
#define TAG_SIZE (2)
#define SALT_SIZE (2)
#define TLM_DATA_SIZE (ES_TLM_LENGTH - 2)
#define EIK_SIZE (ESCS_AES_KEY_SIZE)
#define AES_ECB_CIPHERTEXT_LENGTH (16)
#define AES_ECB_CLEARTEXT_LENGTH (16)
/**@brief Timing structure. */
typedef struct
{
uint32_t time_counter;
uint8_t k_scaler;
} es_security_timing_t;
/**@brief Security slot structure. */
typedef struct
{
nrf_ecb_hal_data_t aes_ecb_ik;
nrf_ecb_hal_data_t aes_ecb_tk;
uint8_t eid[ES_EID_ID_LENGTH];
es_security_timing_t timing;
bool is_occupied;
} es_security_slot_t;
/**@brief Key pair structure. */
typedef struct
{
nrf_crypto_ecc_private_key_t private;
nrf_crypto_ecc_public_key_t public;
} ecdh_key_pair_t;
/**@brief ECDH structure. */
typedef struct
{
ecdh_key_pair_t ecdh_key_pair;
} es_security_ecdh_t;
static nrf_ecb_hal_data_t m_aes_ecb_lk;
static es_security_slot_t m_security_slot[APP_MAX_EID_SLOTS];
static es_security_ecdh_t m_ecdh;
static es_security_msg_cb_t m_security_callback;
static es_stopwatch_id_t m_seconds_passed_sw_id;
// Use static context variables to avoid stack allocation.
static nrf_crypto_aes_context_t m_aes_context;
static nrf_crypto_hmac_context_t m_hmac_context;
static nrf_crypto_aead_context_t m_aead_context;
static nrf_crypto_ecc_key_pair_generate_context_t ecc_key_pair_generate_context;
static nrf_crypto_ecdh_context_t ecdh_context;
/**@brief Generates a temporary key with the Identity key. */
static void temp_key_generate(uint8_t slot_no);
/**@brief Generates a EID with the Temporary Key*/
static void eid_generate(uint8_t slot_no)
{
ret_code_t err_code;
size_t ciphertext_size = AES_ECB_CIPHERTEXT_LENGTH;
temp_key_generate(slot_no);
memset(m_security_slot[slot_no].aes_ecb_tk.cleartext, 0, ESCS_AES_KEY_SIZE);
m_security_slot[slot_no].aes_ecb_tk.cleartext[11] = m_security_slot[slot_no].timing.k_scaler;
uint32_t k_bits_cleared_time =
(m_security_slot[slot_no].timing.time_counter >> m_security_slot[slot_no].timing.k_scaler)
<< m_security_slot[slot_no].timing.k_scaler;
m_security_slot[slot_no].aes_ecb_tk.cleartext[12] =
(uint8_t)((k_bits_cleared_time >> 24) & 0xff);
m_security_slot[slot_no].aes_ecb_tk.cleartext[13] =
(uint8_t)((k_bits_cleared_time >> 16) & 0xff);
m_security_slot[slot_no].aes_ecb_tk.cleartext[14] = (uint8_t)((k_bits_cleared_time >> 8) & 0xff);
m_security_slot[slot_no].aes_ecb_tk.cleartext[15] = (uint8_t)((k_bits_cleared_time) & 0xff);
err_code = nrf_crypto_aes_crypt(&m_aes_context,
&g_nrf_crypto_aes_ecb_128_info,
NRF_CRYPTO_ENCRYPT, // Operation
m_security_slot[slot_no].aes_ecb_tk.key, // Key
NULL, // IV
m_security_slot[slot_no].aes_ecb_tk.cleartext, // Data in
AES_ECB_CLEARTEXT_LENGTH, // Data in size
m_security_slot[slot_no].aes_ecb_tk.ciphertext, // Data out
&ciphertext_size); // Data out size
APP_ERROR_CHECK(err_code);
memcpy(m_security_slot[slot_no].eid,
m_security_slot[slot_no].aes_ecb_tk.ciphertext,
ES_EID_ID_LENGTH);
m_security_callback(slot_no, ES_SECURITY_MSG_EID);
}
/**@brief Generates a temporary key with the Identity key. */
static void temp_key_generate(uint8_t slot_no)
{
ret_code_t err_code;
size_t ciphertext_size = AES_ECB_CIPHERTEXT_LENGTH;
memset(m_security_slot[slot_no].aes_ecb_ik.cleartext, 0, ESCS_AES_KEY_SIZE);
m_security_slot[slot_no].aes_ecb_ik.cleartext[11] = 0xFF;
m_security_slot[slot_no].aes_ecb_ik.cleartext[14] =
(uint8_t)((m_security_slot[slot_no].timing.time_counter >> 24) & 0xff);
m_security_slot[slot_no].aes_ecb_ik.cleartext[15] =
(uint8_t)((m_security_slot[slot_no].timing.time_counter >> 16) & 0xff);
err_code = nrf_crypto_aes_crypt(&m_aes_context,
&g_nrf_crypto_aes_ecb_128_info,
NRF_CRYPTO_ENCRYPT, // Operation
m_security_slot[slot_no].aes_ecb_ik.key, // Key
NULL, // IV
m_security_slot[slot_no].aes_ecb_ik.cleartext, // Data in
AES_ECB_CLEARTEXT_LENGTH, // Data in size
m_security_slot[slot_no].aes_ecb_ik.ciphertext, // Data out
&ciphertext_size); // Data out size
APP_ERROR_CHECK(err_code);
memcpy(m_security_slot[slot_no].aes_ecb_tk.key,
m_security_slot[slot_no].aes_ecb_ik.ciphertext,
ESCS_AES_KEY_SIZE);
}
/**@brief See if EID should be re-calculated.
*/
static void check_rollovers_and_update_eid(uint8_t slot_no)
{
static uint32_t last_invocation_time_counter = 0;
uint32_t scaler = 2 << (m_security_slot[slot_no].timing.k_scaler - 1);
uint32_t diff;
if (last_invocation_time_counter == 0)
{
last_invocation_time_counter = m_security_slot[slot_no].timing.time_counter;
}
diff = m_security_slot[slot_no].timing.time_counter - last_invocation_time_counter;
if (diff >= scaler)
{
// Store to last scaler-aligned time.
last_invocation_time_counter = (m_security_slot[slot_no].timing.time_counter / scaler) * scaler;
eid_generate(slot_no);
}
}
/**@brief Initialize lock code from flash. If it does not exist, copy from APP_CONFIG_LOCK_CODE.
*/
static void lock_code_init(uint8_t * p_lock_buff)
{
ret_code_t err_code;
err_code = es_flash_access_lock_key(p_lock_buff, ES_FLASH_ACCESS_READ);
FLASH_ACCES_ERROR_CHECK_ALLOW_NOT_FOUND(err_code);
// If no lock keys exist, then generate one and copy it to buffer.
if (err_code == FDS_ERR_NOT_FOUND)
{
uint8_t lock_code[16] = APP_CONFIG_LOCK_CODE;
memcpy(p_lock_buff, lock_code, sizeof(lock_code));
err_code = es_flash_access_lock_key(p_lock_buff, ES_FLASH_ACCESS_WRITE);
APP_ERROR_CHECK(err_code);
}
}
void es_security_update_time(void)
{
static uint32_t timer_persist;
uint32_t second_since_last_invocation = es_stopwatch_check(m_seconds_passed_sw_id);
if (second_since_last_invocation > 0)
{
for (uint32_t i = 0; i < APP_MAX_EID_SLOTS; ++i)
{
if (m_security_slot[i].is_occupied)
{
m_security_slot[i].timing.time_counter += second_since_last_invocation;
check_rollovers_and_update_eid(i);
}
}
// Every 24 hr, write the new EID timer to flash.
timer_persist += second_since_last_invocation;
const uint32_t TWENTY_FOUR_HOURS = 60 * 60 * 24;
if (timer_persist >= TWENTY_FOUR_HOURS)
{
for (uint32_t i = 0; i < APP_MAX_EID_SLOTS; ++i)
{
if (m_security_slot[i].is_occupied)
{
m_security_callback(i, ES_SECURITY_MSG_STORE_TIME);
}
}
timer_persist = 0;
}
}
}
void es_security_eid_slots_restore(uint8_t slot_no,
uint8_t k_scaler,
uint32_t time_counter,
const uint8_t * p_ik)
{
m_security_slot[slot_no].timing.k_scaler = k_scaler;
m_security_slot[slot_no].timing.time_counter = time_counter;
memcpy(m_security_slot[slot_no].aes_ecb_ik.key, p_ik, ESCS_AES_KEY_SIZE);
m_security_slot[slot_no].is_occupied = true;
m_security_callback(slot_no, ES_SECURITY_MSG_IK);
eid_generate(slot_no);
}
ret_code_t es_security_lock_code_update(uint8_t * p_ecrypted_key)
{
ret_code_t err_code;
uint8_t temp_buff[ESCS_AES_KEY_SIZE] = {0};
size_t temp_buff_size = sizeof(temp_buff);
err_code = nrf_crypto_aes_crypt(&m_aes_context,
&g_nrf_crypto_aes_ecb_128_info,
NRF_CRYPTO_DECRYPT, // Operation
m_aes_ecb_lk.key, // Key
NULL, // IV
p_ecrypted_key, // Data in
16, // Data in size
temp_buff, // Data out
&temp_buff_size); // Data out size
VERIFY_SUCCESS(err_code);
memcpy(m_aes_ecb_lk.key, temp_buff, ESCS_AES_KEY_SIZE);
return es_flash_access_lock_key(m_aes_ecb_lk.key, ES_FLASH_ACCESS_WRITE);
}
void es_security_unlock_prepare(uint8_t * p_challenge)
{
ret_code_t err_code;
size_t ciphertext_size = AES_ECB_CIPHERTEXT_LENGTH;
memcpy(m_aes_ecb_lk.cleartext, p_challenge, ESCS_AES_KEY_SIZE);
err_code = nrf_crypto_aes_crypt(&m_aes_context,
&g_nrf_crypto_aes_ecb_128_info,
NRF_CRYPTO_ENCRYPT, // Operation
m_aes_ecb_lk.key, // Key
NULL, // IV
m_aes_ecb_lk.cleartext, // Data in
AES_ECB_CLEARTEXT_LENGTH, // Data in size
m_aes_ecb_lk.ciphertext, // Data out
&ciphertext_size); // Data out size
APP_ERROR_CHECK(err_code);
}
void es_security_unlock_verify(uint8_t * p_unlock_token)
{
if (memcmp(p_unlock_token, m_aes_ecb_lk.ciphertext, ESCS_AES_KEY_SIZE) == 0)
{
m_security_callback(0, ES_SECURITY_MSG_UNLOCKED);
}
}
ret_code_t es_security_random_challenge_generate(uint8_t * p_rand_chlg_buff)
{
return nrf_crypto_rng_vector_generate(p_rand_chlg_buff, ESCS_AES_KEY_SIZE);
}
void es_security_shared_ik_receive(uint8_t slot_no, uint8_t * p_encrypted_ik, uint8_t scaler_k)
{
ret_code_t err_code;
size_t cleartext_size = AES_ECB_CLEARTEXT_LENGTH;
m_security_slot[slot_no].is_occupied = true;
m_security_slot[slot_no].timing.k_scaler = scaler_k;
m_security_slot[slot_no].timing.time_counter = APP_CONFIG_TIMING_INIT_VALUE;
err_code = nrf_crypto_aes_crypt(&m_aes_context,
&g_nrf_crypto_aes_ecb_128_info,
NRF_CRYPTO_DECRYPT, // Operation
m_aes_ecb_lk.key, // Key
NULL, // IV
p_encrypted_ik, // Data in
16, // Data in size
m_security_slot[slot_no].aes_ecb_ik.key, // Data out
&cleartext_size); // Data out size
APP_ERROR_CHECK(err_code);
eid_generate(slot_no);
m_security_callback(slot_no, ES_SECURITY_MSG_IK);
}
void es_security_client_pub_ecdh_receive(uint8_t slot_no, uint8_t * p_pub_ecdh, uint8_t scaler_k)
{
ret_code_t err_code;
nrf_crypto_ecc_public_key_t phone_public; // Phone public ECDH key
uint8_t beacon_public[ESCS_ECDH_KEY_SIZE]; // Beacon public ECDH key
uint8_t shared[ESCS_ECDH_KEY_SIZE]; // Shared secret ECDH key
uint8_t public_keys[64]; // Buffer for concatenated public keys
uint8_t key_material[64]; // Buffer for holding key material
uint8_t empty_check[ESCS_ECDH_KEY_SIZE] = {0};
size_t beacon_public_size = sizeof(beacon_public);
size_t shared_size = sizeof(shared);
size_t key_material_size = sizeof(key_material);
m_security_slot[slot_no].is_occupied = true;
m_security_slot[slot_no].timing.k_scaler = scaler_k;
m_security_slot[slot_no].timing.time_counter = APP_CONFIG_TIMING_INIT_VALUE;
// Get public 32-byte service ECDH key from phone.
err_code = nrf_crypto_ecc_public_key_from_raw(&g_nrf_crypto_ecc_curve25519_curve_info,
&phone_public,
p_pub_ecdh,
ESCS_ECDH_KEY_SIZE);
APP_ERROR_CHECK(err_code);
// Generate key pair.
err_code = nrf_crypto_ecc_key_pair_generate(&ecc_key_pair_generate_context,
&g_nrf_crypto_ecc_curve25519_curve_info,
&m_ecdh.ecdh_key_pair.private,
&m_ecdh.ecdh_key_pair.public);
APP_ERROR_CHECK(err_code);
// Generate shared 32-byte ECDH secret from beacon private service ECDH key and phone public ECDH key.
err_code = nrf_crypto_ecdh_compute(&ecdh_context,
&m_ecdh.ecdh_key_pair.private,
&phone_public,
shared,
&shared_size);
APP_ERROR_CHECK(err_code);
// Verify that the shared secret is not zero at this point, and report an error/reset if it is.
if (memcmp(empty_check, shared, ESCS_ECDH_KEY_SIZE) == 0)
{
APP_ERROR_CHECK(NRF_ERROR_INTERNAL);
}
// Concatenate the resolver's public key and beacon's public key
err_code = nrf_crypto_ecc_public_key_to_raw(&m_ecdh.ecdh_key_pair.public,
beacon_public,
&beacon_public_size);
APP_ERROR_CHECK(err_code);
memcpy(public_keys, p_pub_ecdh, 32);
memcpy(public_keys + 32, beacon_public, 32);
// Convert the shared secret to key material using HKDF-SHA256. HKDF is used with the salt set
// to a concatenation of the resolver's public key and beacon's public key
err_code = nrf_crypto_hkdf_calculate(&m_hmac_context,
&g_nrf_crypto_hmac_sha256_info,
key_material, // Output key
&key_material_size, // Output key size
shared, // Input key
sizeof(shared), // Input key size
public_keys, // Salt
sizeof(public_keys), // Salt size
NULL, // Additional info
0, // Additional info size
NRF_CRYPTO_HKDF_EXTRACT_AND_EXPAND); // Mode
APP_ERROR_CHECK(err_code);
// Truncate the key material to 128 bits to convert it to an AES-128 secret key (Identity key).
memcpy(m_security_slot[slot_no].aes_ecb_ik.key, key_material, ESCS_AES_KEY_SIZE);
eid_generate(slot_no);
m_security_callback(slot_no, ES_SECURITY_MSG_ECDH);
m_security_callback(slot_no, ES_SECURITY_MSG_IK);
}
void es_security_pub_ecdh_get(uint8_t slot_no, uint8_t * p_edch_buffer)
{
ret_code_t err_code;
size_t buffer_size = ESCS_ECDH_KEY_SIZE;
err_code = nrf_crypto_ecc_public_key_to_raw(&m_ecdh.ecdh_key_pair.public,
p_edch_buffer,
&buffer_size);
APP_ERROR_CHECK(err_code);
}
uint32_t es_security_clock_get(uint8_t slot_no)
{
return m_security_slot[slot_no].timing.time_counter;
}
void es_security_eid_slot_destroy(uint8_t slot_no)
{
memset(&m_security_slot[slot_no], 0, sizeof(es_security_slot_t));
}
uint8_t es_security_scaler_get(uint8_t slot_no)
{
return m_security_slot[slot_no].timing.k_scaler;
}
void es_security_eid_get(uint8_t slot_no, uint8_t * p_eid_buffer)
{
memcpy(p_eid_buffer, m_security_slot[slot_no].eid, ES_EID_ID_LENGTH);
}
void es_security_encrypted_eid_id_key_get(uint8_t slot_no, uint8_t * p_key_buffer)
{
ret_code_t err_code;
size_t ciphertext_size = AES_ECB_CIPHERTEXT_LENGTH;
memcpy(m_aes_ecb_lk.cleartext, m_security_slot[slot_no].aes_ecb_ik.key, ESCS_AES_KEY_SIZE);
err_code = nrf_crypto_aes_crypt(&m_aes_context,
&g_nrf_crypto_aes_ecb_128_info,
NRF_CRYPTO_ENCRYPT, // Operation
m_aes_ecb_lk.key, // Key
NULL, // IV
m_aes_ecb_lk.cleartext, // Data in
AES_ECB_CLEARTEXT_LENGTH, // Data in size
m_aes_ecb_lk.ciphertext, // Data out
&ciphertext_size); // Data out size
APP_ERROR_CHECK(err_code);
memcpy(p_key_buffer, m_aes_ecb_lk.ciphertext, ESCS_AES_KEY_SIZE);
}
void es_security_plain_eid_id_key_get(uint8_t slot_no, uint8_t * p_key_buffer)
{
memcpy(p_key_buffer, m_security_slot[slot_no].aes_ecb_ik.key, ESCS_AES_KEY_SIZE);
}
void es_security_tlm_to_etlm(uint8_t ik_slot_no, es_tlm_frame_t * p_tlm, es_etlm_frame_t * p_etlm)
{
ret_code_t err_code;
uint8_t plain[TLM_DATA_SIZE] = {0}; // Plaintext tlm, without the frame byte and version.
size_t nplain = TLM_DATA_SIZE; // Length of message plaintext.
/*lint -save -e420 */
memcpy(plain, &p_tlm->vbatt[0], sizeof(plain));
uint8_t key[EIK_SIZE] = {0}; // Encryption/decryption key: EIK.
memcpy(key, &m_security_slot[ik_slot_no].aes_ecb_ik.key[0], EIK_SIZE);
/*lint -restore */
uint8_t nonce[NONCE_SIZE] = {0}; // Nonce. This must not repeat for a given key.
size_t nnonce = NONCE_SIZE; // Length of nonce.First 4 bytes are beacon time base with k-bits cleared.
// Last two bits are randomly generated
// Take the current timestamp and clear the lowest K bits, use it as nonce.
uint32_t k_bits_cleared_time = (m_security_slot[ik_slot_no].timing.time_counter
>> m_security_slot[ik_slot_no].timing.k_scaler)
<< m_security_slot[ik_slot_no].timing.k_scaler;
nonce[0] = (uint8_t)((k_bits_cleared_time >> 24) & 0xff);
nonce[1] = (uint8_t)((k_bits_cleared_time >> 16) & 0xff);
nonce[2] = (uint8_t)((k_bits_cleared_time >> 8) & 0xff);
nonce[3] = (uint8_t)((k_bits_cleared_time) & 0xff);
// Generate random salt.
uint8_t salt[SALT_SIZE] = {0};
err_code = nrf_crypto_rng_vector_generate(salt, SALT_SIZE);
APP_ERROR_CHECK(err_code);
memcpy(&nonce[4], salt, SALT_SIZE);
uint8_t cipher[ES_ETLM_ECRYPTED_LENGTH]; // Ciphertext output. nplain bytes are written.
uint8_t tag[TAG_SIZE] = {0}; // Authentication tag. ntag bytes are written.
size_t ntag = TAG_SIZE; // Length of authentication tag.
// Encryption
// --------------------------------------------------------------------------
err_code = nrf_crypto_aead_init(&m_aead_context, &g_nrf_crypto_aes_eax_128_info, key);
APP_ERROR_CHECK(err_code);
err_code = nrf_crypto_aead_crypt(&m_aead_context,
NRF_CRYPTO_ENCRYPT, // Operation
nonce, // Nonce
nnonce, // Nonce size
NULL, // Additional authenticated data (adata)
0, // Additional authenticated data size
plain, // Input data
nplain, // Input data size
cipher, // Output data
tag, // MAC result output
ntag); // MAC size
APP_ERROR_CHECK(err_code);
err_code = nrf_crypto_aead_uninit(&m_aead_context);
APP_ERROR_CHECK(err_code);
// Construct the eTLM.
// --------------------------------------------------------------------------
p_etlm->frame_type = p_tlm->frame_type;
p_etlm->version = ES_TLM_VERSION_ETLM;
memcpy(p_etlm->encrypted_tlm, cipher, ES_ETLM_ECRYPTED_LENGTH);
memcpy((uint8_t *)&p_etlm->random_salt, salt, SALT_SIZE);
memcpy((uint8_t *)&p_etlm->msg_integrity_check, tag, TAG_SIZE);
}
ret_code_t es_security_init(es_security_msg_cb_t security_callback)
{
ret_code_t err_code;
if (security_callback == NULL)
{
return NRF_ERROR_INVALID_PARAM;
}
// Get lock code from 'es_app_config.h', or fetch it from flash if exists.
lock_code_init(m_aes_ecb_lk.key);
m_security_callback = security_callback;
memset(&m_ecdh, 0, sizeof(es_security_ecdh_t));
for (uint32_t i = 0; i < APP_MAX_EID_SLOTS; ++i)
{
m_security_slot[i].timing.time_counter = APP_CONFIG_TIMING_INIT_VALUE;
}
err_code = es_stopwatch_create(&m_seconds_passed_sw_id, APP_TIMER_TICKS(1000));
APP_ERROR_CHECK(err_code);
err_code = nrf_crypto_init();
APP_ERROR_CHECK(err_code);
return NRF_SUCCESS;
}