xiaozhengsheng 6df0f7d96e 初始版本
2025-08-19 09:49:41 +08:00

1122 lines
36 KiB
C

/**
* Copyright (c) 2012 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/* Attention!
* To maintain compliance with Nordic Semiconductor ASA's Bluetooth profile
* qualification listings, this section of source code must not be modified.
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(BLE_GLS)
#include "ble_gls.h"
#include <string.h>
#include "ble_gls_db.h"
#include "ble_racp.h"
#include "ble_srv_common.h"
#define OPERAND_FILTER_TYPE_SEQ_NUM 0x01 /**< Filter data using Sequence Number criteria. */
#define OPERAND_FILTER_TYPE_FACING_TIME 0x02 /**< Filter data using User Facing Time criteria. */
#define OPERAND_FILTER_TYPE_RFU_START 0x07 /**< Start of filter types reserved For Future Use range */
#define OPERAND_FILTER_TYPE_RFU_END 0xFF /**< End of filter types reserved For Future Use range */
#define OPCODE_LENGTH 1 /**< Length of opcode inside Glucose Measurement packet. */
#define HANDLE_LENGTH 2 /**< Length of handle inside Glucose Measurement packet. */
#define MAX_GLM_LEN (BLE_GATT_ATT_MTU_DEFAULT - OPCODE_LENGTH - \
HANDLE_LENGTH) /**< Maximum size of a transmitted Glucose Measurement. */
#define RACP_OPERAND_LEN 2 /**< Record Access Control Point operand length. */
#define GLS_NACK_PROC_ALREADY_IN_PROGRESS BLE_GATT_STATUS_ATTERR_APP_BEGIN + 0 /**< Reply when a requested procedure is already in progress. */
#define GLS_NACK_CCCD_IMPROPERLY_CONFIGURED BLE_GATT_STATUS_ATTERR_APP_BEGIN + 1 /**< Reply when the a s CCCD is improperly configured. */
static bool m_procesing_active; /**< Processing requested data. */
static uint16_t m_next_seq_num; /**< Sequence number of the next database record. */
static uint8_t m_racp_proc_operator; /**< Operator of current request. */
static uint16_t m_racp_proc_seq_num; /**< Sequence number of current request. */
static uint8_t m_racp_proc_record_ndx; /**< Current record index. */
static uint8_t m_racp_proc_records_reported; /**< Number of reported records. */
/**@brief Function for interception of GATT errors and @ref nrf_ble_gq errors.
*
* @param[in] nrf_error Error code.
* @param[in] p_ctx Parameter from the event handler.
* @param[in] conn_handle Connection handle.
*/
static void gatt_error_handler(uint32_t nrf_error,
void * p_ctx,
uint16_t conn_handle)
{
ble_gls_t * p_gls = (ble_gls_t *)p_ctx;
if ((p_gls->error_handler) != NULL && (nrf_error != NRF_ERROR_INVALID_STATE))
{
p_gls->error_handler(nrf_error);
}
}
/**@brief Function for setting the next sequence number by reading the last record in the data base.
*
* @return NRF_SUCCESS on successful initialization of service, otherwise an error code.
*/
static uint32_t next_sequence_number_set(void)
{
uint16_t num_records;
ble_gls_rec_t rec;
num_records = ble_gls_db_num_records_get();
if (num_records > 0)
{
// Get last record
uint32_t err_code = ble_gls_db_record_get(num_records - 1, &rec);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
m_next_seq_num = rec.meas.sequence_number + 1;
}
else
{
m_next_seq_num = 0;
}
return NRF_SUCCESS;
}
/**@brief Function for encoding a Glucose measurement.
*
* @param[in] p_meas Measurement to be encoded.
* @param[out] p_encoded_buffer Pointer to buffer where the encoded measurement is to be stored.
*
* @return Size of encoded measurement.
*/
static uint8_t gls_meas_encode(const ble_gls_meas_t * p_meas, uint8_t * p_encoded_buffer)
{
uint8_t len = 0;
p_encoded_buffer[len++] = p_meas->flags;
len += uint16_encode(p_meas->sequence_number, &p_encoded_buffer[len]);
len += ble_date_time_encode(&p_meas->base_time, &p_encoded_buffer[len]);
if (p_meas->flags & BLE_GLS_MEAS_FLAG_TIME_OFFSET)
{
len += uint16_encode(p_meas->time_offset, &p_encoded_buffer[len]);
}
if (p_meas->flags & BLE_GLS_MEAS_FLAG_CONC_TYPE_LOC)
{
uint16_t encoded_concentration;
encoded_concentration = ((p_meas->glucose_concentration.exponent << 12) & 0xF000) |
((p_meas->glucose_concentration.mantissa << 0) & 0x0FFF);
p_encoded_buffer[len++] = (uint8_t)(encoded_concentration);
p_encoded_buffer[len++] = (uint8_t)(encoded_concentration >> 8);
p_encoded_buffer[len++] = (p_meas->sample_location << 4) | (p_meas->type & 0x0F);
}
if (p_meas->flags & BLE_GLS_MEAS_FLAG_SENSOR_STATUS)
{
len += uint16_encode(p_meas->sensor_status_annunciation, &p_encoded_buffer[len]);
}
return len;
}
uint32_t ble_gls_init(ble_gls_t * p_gls, const ble_gls_init_t * p_gls_init)
{
VERIFY_PARAM_NOT_NULL(p_gls);
VERIFY_PARAM_NOT_NULL(p_gls_init);
VERIFY_PARAM_NOT_NULL(p_gls_init->p_gatt_queue);
uint32_t err_code;
uint8_t num_recs;
uint8_t init_value_encoded[MAX_GLM_LEN];
ble_uuid_t ble_uuid;
ble_add_char_params_t add_char_params;
ble_gls_rec_t initial_gls_rec_value;
// Initialize data base
err_code = ble_gls_db_init();
if (err_code != NRF_SUCCESS)
{
return err_code;
}
err_code = next_sequence_number_set();
if (err_code != NRF_SUCCESS)
{
return err_code;
}
// Initialize service structure
p_gls->evt_handler = p_gls_init->evt_handler;
p_gls->error_handler = p_gls_init->error_handler;
p_gls->feature = p_gls_init->feature;
p_gls->is_context_supported = p_gls_init->is_context_supported;
p_gls->conn_handle = BLE_CONN_HANDLE_INVALID;
p_gls->p_gatt_queue = p_gls_init->p_gatt_queue;
// Add service
BLE_UUID_BLE_ASSIGN(ble_uuid, BLE_UUID_GLUCOSE_SERVICE);
err_code = sd_ble_gatts_service_add(BLE_GATTS_SRVC_TYPE_PRIMARY,
&ble_uuid,
&p_gls->service_handle);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
// Add glucose measurement characteristic
memset(&add_char_params, 0, sizeof(add_char_params));
memset(&initial_gls_rec_value, 0, sizeof(initial_gls_rec_value));
num_recs = ble_gls_db_num_records_get();
if (num_recs > 0)
{
err_code = ble_gls_db_record_get(num_recs - 1, &initial_gls_rec_value);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
add_char_params.uuid = BLE_UUID_GLUCOSE_MEASUREMENT_CHAR;
add_char_params.max_len = MAX_GLM_LEN;
add_char_params.init_len = gls_meas_encode(&initial_gls_rec_value.meas,
init_value_encoded);
add_char_params.is_var_len = true;
add_char_params.char_props.notify = 1;
add_char_params.cccd_write_access = p_gls_init->gl_meas_cccd_wr_sec;
add_char_params.p_init_value = init_value_encoded;
err_code = characteristic_add(p_gls->service_handle, &add_char_params, &p_gls->glm_handles);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
// Add glucose measurement feature characteristic
memset(&add_char_params, 0, sizeof(add_char_params));
add_char_params.uuid = BLE_UUID_GLUCOSE_FEATURE_CHAR;
add_char_params.max_len = sizeof(uint16_t);
add_char_params.init_len = uint16_encode(p_gls->feature, init_value_encoded);
add_char_params.p_init_value = init_value_encoded;
add_char_params.char_props.read = 1;
add_char_params.read_access = p_gls_init->gl_feature_rd_sec;
err_code = characteristic_add(p_gls->service_handle, &add_char_params, &p_gls->glf_handles);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
// Add record control access point characteristic
memset(&add_char_params, 0, sizeof(add_char_params));
add_char_params.uuid = BLE_UUID_RECORD_ACCESS_CONTROL_POINT_CHAR;
add_char_params.max_len = BLE_GATT_ATT_MTU_DEFAULT;
add_char_params.is_var_len = true;
add_char_params.char_props.indicate = 1;
add_char_params.char_props.write = 1;
add_char_params.cccd_write_access = p_gls_init->racp_cccd_wr_sec;
add_char_params.write_access = p_gls_init->racp_wr_sec;
add_char_params.is_defered_write = true;
err_code = characteristic_add(p_gls->service_handle,
&add_char_params,
&p_gls->racp_handles);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
return NRF_SUCCESS;
}
/**@brief Function for sending a response from the Record Access Control Point.
*
* @param[in] p_gls Service instance.
* @param[in] p_racp_val RACP value to be sent.
*/
static void racp_send(ble_gls_t * p_gls, ble_racp_value_t * p_racp_val)
{
uint32_t err_code;
uint8_t encoded_resp[25];
uint16_t len;
// Send indication
len = ble_racp_encode(p_racp_val, encoded_resp);
nrf_ble_gq_req_t gls_req;
memset(&gls_req, 0, sizeof(nrf_ble_gq_req_t));
gls_req.type = NRF_BLE_GQ_REQ_GATTS_HVX;
gls_req.error_handler.cb = gatt_error_handler;
gls_req.error_handler.p_ctx = p_gls;
gls_req.params.gatts_hvx.handle = p_gls->racp_handles.value_handle;
gls_req.params.gatts_hvx.type = BLE_GATT_HVX_INDICATION;
gls_req.params.gatts_hvx.offset = 0;
gls_req.params.gatts_hvx.p_data = encoded_resp;
gls_req.params.gatts_hvx.p_len = &len;
err_code = nrf_ble_gq_item_add(p_gls->p_gatt_queue, &gls_req, p_gls->conn_handle);
// Report error to application
if ((p_gls->error_handler != NULL) &&
(err_code != NRF_SUCCESS) &&
(err_code != NRF_ERROR_INVALID_STATE))
{
p_gls->error_handler(err_code);
}
}
/**@brief Function for sending a RACP response containing a Response Code Op Code and a Response Code Value.
*
* @param[in] p_gls Service instance.
* @param[in] opcode RACP Op Code.
* @param[in] value RACP Response Code Value.
*/
static void racp_response_code_send(ble_gls_t * p_gls, uint8_t opcode, uint8_t value)
{
ble_racp_value_t racp_response;
uint8_t pending_racp_response_operand[RACP_OPERAND_LEN] = {0};
memset(&racp_response, 0, sizeof(racp_response));
racp_response.opcode = RACP_OPCODE_RESPONSE_CODE;
racp_response.operator = RACP_OPERATOR_NULL;
racp_response.operand_len = 2;
racp_response.p_operand = pending_racp_response_operand;
pending_racp_response_operand[0] = opcode;
pending_racp_response_operand[1] = value;
racp_send(p_gls, &racp_response);
}
/**@brief Function for sending a glucose measurement/context.
*
* @param[in] p_gls Service instance.
* @param[in] p_rec Measurement to be sent.
*
* @return NRF_SUCCESS on success, otherwise an error code.
*/
static uint32_t glucose_meas_send(ble_gls_t * p_gls, ble_gls_rec_t * p_rec)
{
uint32_t err_code;
uint8_t encoded_glm[MAX_GLM_LEN];
uint16_t len;
uint16_t hvx_len;
ble_gatts_hvx_params_t hvx_params;
len = gls_meas_encode(&p_rec->meas, encoded_glm);
hvx_len = len;
memset(&hvx_params, 0, sizeof(hvx_params));
hvx_params.handle = p_gls->glm_handles.value_handle;
hvx_params.type = BLE_GATT_HVX_NOTIFICATION;
hvx_params.offset = 0;
hvx_params.p_len = &hvx_len;
hvx_params.p_data = encoded_glm;
err_code = sd_ble_gatts_hvx(p_gls->conn_handle, &hvx_params);
if (err_code == NRF_SUCCESS)
{
if (hvx_len != len)
{
err_code = NRF_ERROR_DATA_SIZE;
}
else
{
// Measurement successfully sent
m_racp_proc_records_reported++;
}
}
return err_code;
}
/**@brief Function for responding to the ALL operation.
*
* @param[in] p_gls Service instance.
*
* @return NRF_SUCCESS on success, otherwise an error code.
*/
static uint32_t racp_report_records_all(ble_gls_t * p_gls)
{
uint16_t total_records = ble_gls_db_num_records_get();
if (m_racp_proc_record_ndx >= total_records)
{
m_procesing_active = false;
}
else
{
uint32_t err_code;
ble_gls_rec_t rec;
err_code = ble_gls_db_record_get(m_racp_proc_record_ndx, &rec);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
err_code = glucose_meas_send(p_gls, &rec);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
return NRF_SUCCESS;
}
/**@brief Function for responding to the FIRST or the LAST operation.
*
* @param[in] p_gls Service instance.
*
* @return NRF_SUCCESS on success, otherwise an error code.
*/
static uint32_t racp_report_records_first_last(ble_gls_t * p_gls)
{
uint32_t err_code;
ble_gls_rec_t rec;
uint16_t total_records;
total_records = ble_gls_db_num_records_get();
if ((m_racp_proc_records_reported != 0) || (total_records == 0))
{
m_procesing_active = false;
}
else
{
if (m_racp_proc_operator == RACP_OPERATOR_FIRST)
{
err_code = ble_gls_db_record_get(0, &rec);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
else if (m_racp_proc_operator == RACP_OPERATOR_LAST)
{
err_code = ble_gls_db_record_get(total_records - 1, &rec);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
err_code = glucose_meas_send(p_gls, &rec);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
return NRF_SUCCESS;
}
/**@brief Function for responding to the GREATER_OR_EQUAL operation.
*
* @param[in] p_gls Service instance.
*
* @return NRF_SUCCESS on success, otherwise an error code.
*/
static uint32_t racp_report_records_greater_or_equal(ble_gls_t * p_gls)
{
uint16_t total_records = ble_gls_db_num_records_get();
while (m_racp_proc_record_ndx < total_records)
{
uint32_t err_code;
ble_gls_rec_t rec;
err_code = ble_gls_db_record_get(m_racp_proc_record_ndx, &rec);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
if (rec.meas.sequence_number >= m_racp_proc_seq_num)
{
err_code = glucose_meas_send(p_gls, &rec);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
break;
}
m_racp_proc_record_ndx++;
}
if (m_racp_proc_record_ndx == total_records)
{
m_procesing_active = false;
}
return NRF_SUCCESS;
}
/**@brief Function for informing that the REPORT RECORDS procedure is completed.
*
* @param[in] p_gls Service instance.
*/
static void racp_report_records_completed(ble_gls_t * p_gls)
{
uint8_t resp_code_value;
if (m_racp_proc_records_reported > 0)
{
resp_code_value = RACP_RESPONSE_SUCCESS;
}
else
{
resp_code_value = RACP_RESPONSE_NO_RECORDS_FOUND;
}
racp_response_code_send(p_gls, RACP_OPCODE_REPORT_RECS, resp_code_value);
}
/**@brief Function for the RACP report records procedure.
*
* @param[in] p_gls Service instance.
*/
static void racp_report_records_procedure(ble_gls_t * p_gls)
{
uint32_t err_code;
while (m_procesing_active)
{
// Execute requested procedure
switch (m_racp_proc_operator)
{
case RACP_OPERATOR_ALL:
err_code = racp_report_records_all(p_gls);
break;
case RACP_OPERATOR_FIRST:
case RACP_OPERATOR_LAST:
err_code = racp_report_records_first_last(p_gls);
break;
case RACP_OPERATOR_GREATER_OR_EQUAL:
err_code = racp_report_records_greater_or_equal(p_gls);
break;
default:
// Report error to application
if (p_gls->error_handler != NULL)
{
p_gls->error_handler(NRF_ERROR_INTERNAL);
}
return;
}
// Error handling
switch (err_code)
{
case NRF_SUCCESS:
if (m_procesing_active)
{
m_racp_proc_record_ndx++;
}
else
{
racp_report_records_completed(p_gls);
}
break;
case NRF_ERROR_RESOURCES:
// Wait for TX_COMPLETE event to resume transmission
return;
case NRF_ERROR_INVALID_STATE:
// Notification is probably not enabled. Ignore request.
m_procesing_active = false;
return;
default:
// Report error to application
if (p_gls->error_handler != NULL)
{
p_gls->error_handler(err_code);
}
return;
}
}
}
/**@brief Function for testing if the received request is to be executed.
*
* @param[in] p_racp_request Request to be checked.
* @param[out] p_response_code Response code to be sent in case the request is rejected.
* RACP_RESPONSE_RESERVED is returned if the received message is
* to be rejected without sending a response.
*
* @return TRUE if the request is to be executed, FALSE if it is to be rejected.
* If it is to be rejected, p_response_code will contain the response code to be
* returned to the central.
*/
static bool is_request_to_be_executed(ble_racp_value_t const * p_racp_request,
uint8_t * p_response_code)
{
*p_response_code = RACP_RESPONSE_RESERVED;
if (p_racp_request->opcode == RACP_OPCODE_ABORT_OPERATION)
{
if (m_procesing_active)
{
if (p_racp_request->operator != RACP_OPERATOR_NULL)
{
*p_response_code = RACP_RESPONSE_INVALID_OPERATOR;
}
else if (p_racp_request->operand_len != 0)
{
*p_response_code = RACP_RESPONSE_INVALID_OPERAND;
}
else
{
*p_response_code = RACP_RESPONSE_SUCCESS;
}
}
else
{
*p_response_code = RACP_RESPONSE_ABORT_FAILED;
}
}
else if (m_procesing_active)
{
return false;
}
// Supported opcodes.
else if ((p_racp_request->opcode == RACP_OPCODE_REPORT_RECS) ||
(p_racp_request->opcode == RACP_OPCODE_REPORT_NUM_RECS))
{
switch (p_racp_request->operator)
{
// Operators WITHOUT a filter.
case RACP_OPERATOR_ALL:
case RACP_OPERATOR_FIRST:
case RACP_OPERATOR_LAST:
if (p_racp_request->operand_len != 0)
{
*p_response_code = RACP_RESPONSE_INVALID_OPERAND;
}
break;
// Operators WITH a filter.
case RACP_OPERATOR_GREATER_OR_EQUAL:
if (p_racp_request->p_operand[0] == OPERAND_FILTER_TYPE_SEQ_NUM)
{
if (p_racp_request->operand_len != 3)
{
*p_response_code = RACP_RESPONSE_INVALID_OPERAND;
}
}
else if (p_racp_request->p_operand[0] == OPERAND_FILTER_TYPE_FACING_TIME)
{
*p_response_code = RACP_RESPONSE_OPERAND_UNSUPPORTED;
}
else if (p_racp_request->p_operand[0] >= OPERAND_FILTER_TYPE_RFU_START)
{
*p_response_code = RACP_RESPONSE_OPERAND_UNSUPPORTED;
}
else
{
*p_response_code = RACP_RESPONSE_INVALID_OPERAND;
}
break;
// Unsupported operators.
case RACP_OPERATOR_LESS_OR_EQUAL:
case RACP_OPERATOR_RANGE:
*p_response_code = RACP_RESPONSE_OPERATOR_UNSUPPORTED;
break;
// Invalid operators.
case RACP_OPERATOR_NULL:
default:
if (p_racp_request->operator >= RACP_OPERATOR_RFU_START)
{
*p_response_code = RACP_RESPONSE_OPERATOR_UNSUPPORTED;
}
else
{
*p_response_code = RACP_RESPONSE_INVALID_OPERATOR;
}
break;
}
}
// Unsupported opcodes,
else if (p_racp_request->opcode == RACP_OPCODE_DELETE_RECS)
{
*p_response_code = RACP_RESPONSE_OPCODE_UNSUPPORTED;
}
// Unknown opcodes.
else
{
*p_response_code = RACP_RESPONSE_OPCODE_UNSUPPORTED;
}
// NOTE: The computation of the return value will change slightly when deferred write has been
// implemented in the stack.
return (*p_response_code == RACP_RESPONSE_RESERVED);
}
/**@brief Function for processing a REPORT RECORDS request.
*
* @param[in] p_gls Service instance.
* @param[in] p_racp_request Request to be executed.
*/
static void report_records_request_execute(ble_gls_t * p_gls, ble_racp_value_t * p_racp_request)
{
uint16_t seq_num = (p_racp_request->p_operand[2] << 8) | p_racp_request->p_operand[1];
m_procesing_active = true;
m_racp_proc_record_ndx = 0;
m_racp_proc_operator = p_racp_request->operator;
m_racp_proc_records_reported = 0;
m_racp_proc_seq_num = seq_num;
racp_report_records_procedure(p_gls);
}
/**@brief Function for processing a REPORT NUM RECORDS request.
*
* @param[in] p_gls Service instance.
* @param[in] p_racp_request Request to be executed.
*/
static void report_num_records_request_execute(ble_gls_t * p_gls, ble_racp_value_t * p_racp_request)
{
uint16_t total_records;
uint16_t num_records;
total_records = ble_gls_db_num_records_get();
num_records = 0;
if (p_racp_request->operator == RACP_OPERATOR_ALL)
{
num_records = total_records;
}
else if (p_racp_request->operator == RACP_OPERATOR_GREATER_OR_EQUAL)
{
uint16_t seq_num;
uint16_t i;
seq_num = (p_racp_request->p_operand[2] << 8) | p_racp_request->p_operand[1];
for (i = 0; i < total_records; i++)
{
uint32_t err_code;
ble_gls_rec_t rec;
err_code = ble_gls_db_record_get(i, &rec);
if (err_code != NRF_SUCCESS)
{
if (p_gls->error_handler != NULL)
{
p_gls->error_handler(err_code);
}
return;
}
if (rec.meas.sequence_number >= seq_num)
{
num_records++;
}
}
}
else if ((p_racp_request->operator == RACP_OPERATOR_FIRST) ||
(p_racp_request->operator == RACP_OPERATOR_LAST))
{
if (total_records > 0)
{
num_records = 1;
}
}
ble_racp_value_t racp_response;
uint8_t pending_racp_response_operand[RACP_OPERAND_LEN] = {0};
memset(&racp_response, 0, sizeof(racp_response));
racp_response.opcode = RACP_OPCODE_NUM_RECS_RESPONSE;
racp_response.operator = RACP_OPERATOR_NULL;
racp_response.operand_len = sizeof(uint16_t);
racp_response.p_operand = pending_racp_response_operand;
pending_racp_response_operand[0] = num_records & 0xFF;
pending_racp_response_operand[1] = num_records >> 8;
racp_send(p_gls, &racp_response);
}
/**@brief Function for checking if the CCCDs are configured.
*
* @param[in] p_gls Service instance.
* @param[in] p_are_cccd_configured boolean indicating if both cccds are configured
*/
uint32_t ble_gls_are_cccd_configured(ble_gls_t * p_gls, bool * p_are_cccd_configured)
{
uint32_t err_code;
uint8_t cccd_value_buf[BLE_CCCD_VALUE_LEN];
bool is_glm_notif_enabled = false;
bool is_racp_indic_enabled = false;
ble_gatts_value_t gatts_value;
// Initialize value struct.
memset(&gatts_value, 0, sizeof(gatts_value));
gatts_value.len = BLE_CCCD_VALUE_LEN;
gatts_value.offset = 0;
gatts_value.p_value = cccd_value_buf;
err_code = sd_ble_gatts_value_get(p_gls->conn_handle,
p_gls->glm_handles.cccd_handle,
&gatts_value);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
is_glm_notif_enabled = ble_srv_is_notification_enabled(cccd_value_buf);
err_code = sd_ble_gatts_value_get(p_gls->conn_handle,
p_gls->racp_handles.cccd_handle,
&gatts_value);
if (err_code != NRF_SUCCESS)
{
return err_code;
}
is_racp_indic_enabled = ble_srv_is_indication_enabled(cccd_value_buf);
if (is_racp_indic_enabled & is_glm_notif_enabled)
{
*p_are_cccd_configured = true;
}
else
{
*p_are_cccd_configured = false;
}
return NRF_SUCCESS;
}
/**@brief Function for handling a write event to the Record Access Control Point.
*
* @param[in] p_gls Service instance.
* @param[in] p_evt_write WRITE event to be handled.
*/
static void on_racp_value_write(ble_gls_t * p_gls, ble_gatts_evt_write_t const * p_evt_write)
{
ble_racp_value_t racp_request;
uint8_t response_code;
ble_gatts_rw_authorize_reply_params_t auth_reply;
bool are_cccd_configured;
uint32_t err_code;
auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE;
auth_reply.params.write.offset = 0;
auth_reply.params.write.len = 0;
auth_reply.params.write.p_data = NULL;
err_code = ble_gls_are_cccd_configured(p_gls, &are_cccd_configured);
if (err_code != NRF_SUCCESS)
{
if (p_gls->error_handler != NULL)
{
p_gls->error_handler(err_code);
}
return;
}
if (!are_cccd_configured)
{
auth_reply.params.write.gatt_status = GLS_NACK_CCCD_IMPROPERLY_CONFIGURED;
err_code = sd_ble_gatts_rw_authorize_reply(p_gls->conn_handle,
&auth_reply);
if (err_code != NRF_SUCCESS)
{
if (p_gls->error_handler != NULL)
{
p_gls->error_handler(err_code);
}
}
return;
}
// Decode request.
ble_racp_decode(p_evt_write->len, (uint8_t *)p_evt_write->data, &racp_request);
// Check if request is to be executed.
if (is_request_to_be_executed(&racp_request, &response_code))
{
auth_reply.params.write.gatt_status = BLE_GATT_STATUS_SUCCESS;
auth_reply.params.write.update = 1;
err_code = sd_ble_gatts_rw_authorize_reply(p_gls->conn_handle,
&auth_reply);
if (err_code != NRF_SUCCESS)
{
if (p_gls->error_handler != NULL)
{
p_gls->error_handler(err_code);
}
return;
}
// Execute request.
if (racp_request.opcode == RACP_OPCODE_REPORT_RECS)
{
report_records_request_execute(p_gls, &racp_request);
}
else if (racp_request.opcode == RACP_OPCODE_REPORT_NUM_RECS)
{
report_num_records_request_execute(p_gls, &racp_request);
}
}
else if (response_code != RACP_RESPONSE_RESERVED)
{
auth_reply.params.write.gatt_status = BLE_GATT_STATUS_SUCCESS;
auth_reply.params.write.update = 1;
err_code = sd_ble_gatts_rw_authorize_reply(p_gls->conn_handle,
&auth_reply);
if (err_code != NRF_SUCCESS)
{
if (p_gls->error_handler != NULL)
{
p_gls->error_handler(err_code);
}
return;
}
// Abort any running procedure.
m_procesing_active = false;
// Respond with error code.
racp_response_code_send(p_gls, racp_request.opcode, response_code);
}
else
{
auth_reply.params.write.gatt_status = GLS_NACK_PROC_ALREADY_IN_PROGRESS;
err_code = sd_ble_gatts_rw_authorize_reply(p_gls->conn_handle,
&auth_reply);
if (err_code != NRF_SUCCESS)
{
if (p_gls->error_handler != NULL)
{
p_gls->error_handler(err_code);
}
return;
}
}
}
/**@brief Function for handling the Glucose measurement CCCD write event.
*
* @param[in] p_gls Service instance.
* @param[in] p_evt_write WRITE event to be handled.
*/
static void on_glm_cccd_write(ble_gls_t * p_gls, ble_gatts_evt_write_t const * p_evt_write)
{
if (p_evt_write->len == 2)
{
// CCCD written, update notification state
ble_gls_evt_t evt;
if (ble_srv_is_notification_enabled(p_evt_write->data))
{
evt.evt_type = BLE_GLS_EVT_NOTIFICATION_ENABLED;
}
else
{
evt.evt_type = BLE_GLS_EVT_NOTIFICATION_DISABLED;
}
if (p_gls->evt_handler != NULL)
{
p_gls->evt_handler(p_gls, &evt);
}
}
}
/**@brief Function for handling the WRITE event.
*
* @details Handles WRITE events from the BLE stack.
*
* @param[in] p_gls Glucose Service structure.
* @param[in] p_ble_evt Event received from the BLE stack.
*/
static void on_write(ble_gls_t * p_gls, ble_evt_t const * p_ble_evt)
{
ble_gatts_evt_write_t const * p_evt_write = &p_ble_evt->evt.gatts_evt.params.write;
if (p_evt_write->handle == p_gls->glm_handles.cccd_handle)
{
on_glm_cccd_write(p_gls, p_evt_write);
}
else if (p_evt_write->handle == p_gls->racp_handles.value_handle)
{
on_racp_value_write(p_gls, p_evt_write);
}
}
/**@brief Function for handling the TX_COMPLETE event.
*
* @details Handles TX_COMPLETE events from the BLE stack.
*
* @param[in] p_gls Glucose Service structure.
* @param[in] p_ble_evt Event received from the BLE stack.
*/
static void on_tx_complete(ble_gls_t * p_gls, ble_evt_t const * p_ble_evt)
{
if (m_procesing_active)
{
racp_report_records_procedure(p_gls);
}
}
static void on_rw_authorize_request(ble_gls_t * p_gls, ble_gatts_evt_t const * p_gatts_evt)
{
ble_gatts_evt_rw_authorize_request_t const * p_auth_req =
&p_gatts_evt->params.authorize_request;
if (p_auth_req->type == BLE_GATTS_AUTHORIZE_TYPE_WRITE)
{
if ( (p_gatts_evt->params.authorize_request.request.write.op
!= BLE_GATTS_OP_PREP_WRITE_REQ)
&& (p_gatts_evt->params.authorize_request.request.write.op
!= BLE_GATTS_OP_EXEC_WRITE_REQ_NOW)
&& (p_gatts_evt->params.authorize_request.request.write.op
!= BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL)
)
{
if (p_auth_req->request.write.handle == p_gls->racp_handles.value_handle)
{
on_racp_value_write(p_gls, &p_auth_req->request.write);
}
}
}
}
void ble_gls_on_ble_evt(ble_evt_t const * p_ble_evt, void * p_context)
{
ble_gls_t * p_gls = (ble_gls_t *)p_context;
ret_code_t err_code;
switch (p_ble_evt->header.evt_id)
{
case BLE_GAP_EVT_CONNECTED:
p_gls->conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
err_code = nrf_ble_gq_conn_handle_register(p_gls->p_gatt_queue,
p_ble_evt->evt.gap_evt.conn_handle);
if ((err_code != NRF_SUCCESS) && (p_gls->error_handler != NULL))
{
p_gls->error_handler(err_code);
}
break;
case BLE_GAP_EVT_DISCONNECTED:
p_gls->conn_handle = BLE_CONN_HANDLE_INVALID;
break;
case BLE_GATTS_EVT_WRITE:
on_write(p_gls, p_ble_evt);
break;
case BLE_GATTS_EVT_HVN_TX_COMPLETE:
on_tx_complete(p_gls, p_ble_evt);
break;
case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST:
on_rw_authorize_request(p_gls, &p_ble_evt->evt.gatts_evt);
break;
default:
// No implementation needed.
break;
}
}
uint32_t ble_gls_glucose_new_meas(ble_gls_t * p_gls, ble_gls_rec_t * p_rec)
{
p_rec->meas.sequence_number = m_next_seq_num++;
return ble_gls_db_record_add(p_rec);
}
#endif // NRF_MODULE_ENABLED(BLE_GLS)