364 lines
10 KiB
C
Raw Normal View History

2025-08-19 09:49:41 +08:00
/**
* Copyright (c) 2009 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**
* @file
* @brief Implementation of Gazell Pairing Library (gzp), Common functions.
* @defgroup gzp_source_common Gazell Pairing common functions implementation
* @{
* @ingroup gzp_04_source
*/
#include "nrf_gzp.h"
#include "nrf_gzll.h"
#include "nrf_ecb.h"
#include <string.h>
#define SOURCE_FILE NRF_SOURCE_FILE_GZP ///< File identifer for asserts.
/******************************************************************************/
/** @name Global variables
* @{ */
/******************************************************************************/
/**
* Constant holding base address part of the pairing address.
*/
static const uint8_t pairing_base_address[4] = { GZP_ADDRESS };
/**
* Constant holding prefix byte of the pairing address.
*/
static const uint8_t pairing_address_prefix_byte = 0;
/**
* Constant holding pre-defined "validation ID".
*/
static const uint8_t gzp_validation_id[GZP_VALIDATION_ID_LENGTH] = GZP_VALIDATION_ID;
/**
* Constant holding pre-defined "secret key".
*/
static const uint8_t gzp_secret_key[16] = GZP_SECRET_KEY;
/**
* Variable used for AES key selection
*/
static gzp_key_select_t gzp_key_select;
/** @} */
/******************************************************************************/
/** @name Misc. external variables.
* @{ */
/******************************************************************************/
static uint8_t gzp_session_token[GZP_SESSION_TOKEN_LENGTH];
static uint8_t gzp_dyn_key[GZP_DYN_KEY_LENGTH];
/** @} */
/******************************************************************************/
/** @name Implementation common internal GZP functions
* @{ */
/******************************************************************************/
bool gzp_update_radio_params(const uint8_t* system_address)
{
uint8_t i;
uint8_t channels[NRF_GZLL_CONST_MAX_CHANNEL_TABLE_SIZE];
uint32_t channel_table_size;
uint32_t pairing_base_address_32, system_address_32;
bool update_ok = true;
bool gzll_enabled_state;
gzll_enabled_state = nrf_gzll_is_enabled();
// Configure "global" pairing address
pairing_base_address_32 = (pairing_base_address[0]) +
((uint32_t)pairing_base_address[1] << 8) +
((uint32_t)pairing_base_address[2] << 16) +
((uint32_t)pairing_base_address[3] << 24) ;
if (system_address != NULL)
{
system_address_32 = (system_address[0]) +
((uint32_t)system_address[1] << 8) +
((uint32_t)system_address[2] << 16) +
((uint32_t)system_address[3] << 24) ;
}
else
{
return false;
}
nrf_gzp_disable_gzll();
update_ok = update_ok && nrf_gzll_set_base_address_0(pairing_base_address_32);
update_ok = update_ok && nrf_gzll_set_address_prefix_byte(GZP_PAIRING_PIPE, pairing_address_prefix_byte);
update_ok = update_ok && nrf_gzll_set_base_address_1(system_address_32);
// Configure address for pipe 1 - 5. Address byte set to equal pipe number.
for (i = 1; i < NRF_GZLL_CONST_PIPE_COUNT; i++)
{
update_ok = update_ok && nrf_gzll_set_address_prefix_byte(i,i);
}
channel_table_size = nrf_gzll_get_channel_table_size();
gzp_generate_channels(&channels[0], system_address, channel_table_size);
// Write generated channel subset to Gazell Link Layer
update_ok = update_ok && nrf_gzll_set_channel_table(&channels[0], channel_table_size);
if (gzll_enabled_state)
{
update_ok = update_ok && nrf_gzll_enable();
}
return update_ok;
}
void gzp_generate_channels(uint8_t* ch_dst, const uint8_t* system_address, uint8_t channel_tab_size)
{
uint8_t binsize, spacing, i;
binsize = (GZP_CHANNEL_MAX - GZP_CHANNEL_MIN) / channel_tab_size;
ch_dst[0] = GZP_CHANNEL_LOW;
ch_dst[channel_tab_size - 1] = GZP_CHANNEL_HIGH;
if (system_address != NULL)
{
for (i = 1; i < (channel_tab_size - 1); i++)
{
ch_dst[i] = (binsize * i) + (system_address[i % 4] % binsize);
}
}
// If channels are too close, shift them to better positions
for (i = 1; i < channel_tab_size; i++)
{
spacing = (ch_dst[i] - ch_dst[i - 1]);
if (spacing < GZP_CHANNEL_SPACING_MIN)
{
ch_dst[i] += (GZP_CHANNEL_SPACING_MIN - spacing);
}
}
}
__INLINE void nrf_gzp_disable_gzll(void)
{
if (nrf_gzll_is_enabled())
{
nrf_gzll_disable();
__WFI();
while (nrf_gzll_is_enabled())
{
}
}
}
#ifndef GZP_CRYPT_DISABLE
void gzp_xor_cipher(uint8_t* dst, const uint8_t* src, const uint8_t* pad, uint8_t length)
{
uint8_t i;
for (i = 0; i < length; i++)
{
*dst = *src ^ *pad;
dst++;
src++;
pad++;
}
}
bool gzp_validate_id(const uint8_t* id)
{
return (memcmp(id, (void*)gzp_validation_id, GZP_VALIDATION_ID_LENGTH) == 0);
}
void gzp_add_validation_id(uint8_t* dst)
{
memcpy(dst, (void const*)gzp_validation_id, GZP_VALIDATION_ID_LENGTH);
}
void gzp_crypt_set_session_token(const uint8_t * token)
{
memcpy(gzp_session_token, (void const*)token, GZP_SESSION_TOKEN_LENGTH);
}
void gzp_crypt_set_dyn_key(const uint8_t* key)
{
memcpy(gzp_dyn_key, (void const*)key, GZP_DYN_KEY_LENGTH);
}
void gzp_crypt_get_session_token(uint8_t * dst_token)
{
memcpy(dst_token, (void const*)gzp_session_token, GZP_SESSION_TOKEN_LENGTH);
}
void gzp_crypt_get_dyn_key(uint8_t* dst_key)
{
memcpy(dst_key, (void const*)gzp_dyn_key, GZP_DYN_KEY_LENGTH);
}
void gzp_crypt_select_key(gzp_key_select_t key_select)
{
gzp_key_select = key_select;
}
void gzp_crypt(uint8_t* dst, const uint8_t* src, uint8_t length)
{
uint8_t i;
uint8_t key[16];
uint8_t iv[16];
// Build AES key based on "gzp_key_select"
switch (gzp_key_select)
{
case GZP_ID_EXCHANGE:
memcpy(key, (void const*)gzp_secret_key, 16);
break;
case GZP_KEY_EXCHANGE:
memcpy(key, (void const*)gzp_secret_key, 16);
gzp_get_host_id(key);
break;
case GZP_DATA_EXCHANGE:
memcpy(key, (void const*)gzp_secret_key, 16);
memcpy(key, (void const*)gzp_dyn_key, GZP_DYN_KEY_LENGTH);
break;
default:
return;
}
// Build init vector from "gzp_session_token"
for (i = 0; i < 16; i++)
{
if (i < GZP_SESSION_TOKEN_LENGTH)
{
iv[i] = gzp_session_token[i];
}
else
{
iv[i] = 0;
}
}
// Set up hal_aes using new key and init vector
(void)nrf_ecb_init();
nrf_ecb_set_key(key);
//hal_aes_setup(false, ECB, key, NULL); // Note, here we skip the IV as we use ECB mode
// Encrypt IV using ECB mode
(void)nrf_ecb_crypt(iv, iv);
// Encrypt data by XOR'ing with AES output
gzp_xor_cipher(dst, src, iv, length);
}
void gzp_random_numbers_generate(uint8_t * dst, uint8_t n)
{
uint8_t i;
NRF_RNG->EVENTS_VALRDY=0;
NRF_RNG->TASKS_START = 1;
for (i = 0; i < n; i++)
{
while (NRF_RNG->EVENTS_VALRDY==0)
{}
dst[i] = (uint8_t)NRF_RNG->VALUE;
NRF_RNG->EVENTS_VALRDY=0;
}
NRF_RNG->TASKS_STOP = 1;
}
/******************************************************************************/
/** @name Implementation of nRF51 specific GZP functions
* @{ */
/******************************************************************************/
/**
* @brief Function for setting the Primask variable. Only necessary if ARMCC
* compiler skips __set_PRIMASK at high optimization levels.
*
* @param primask The primask value. 1 to disable interrupts, 0 otherwise.
*/
static void nrf_gzp_set_primask(uint32_t primask)
{
#if defined(__CC_ARM)
//lint -save -e10 -e618 -e438 -e550 -e526 -e628 -e526
volatile register uint32_t __regPriMask __ASM("primask");
__regPriMask = (primask);
#else
__set_PRIMASK(primask);
#endif
//lint -restore
}
void nrf_gzp_flush_rx_fifo(uint32_t pipe)
{
static uint8_t dummy_packet[NRF_GZLL_CONST_MAX_PAYLOAD_LENGTH];
uint32_t length;
nrf_gzp_set_primask(1);
while (nrf_gzll_get_rx_fifo_packet_count(pipe) >0)
{
length = NRF_GZLL_CONST_MAX_PAYLOAD_LENGTH;
(void)nrf_gzll_fetch_packet_from_rx_fifo(pipe,dummy_packet,&length);
}
nrf_gzp_set_primask(0);
}
/** @} */
/******************************************************************************/
/** @name Implementation of debug functions
* @{ */
/******************************************************************************/
/** @} */
/** @} */
#endif