650 lines
31 KiB
C
Raw Normal View History

2025-08-19 09:49:41 +08:00
/**
* Copyright (c) 2016 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef __NRF_ESB_H
#define __NRF_ESB_H
#include <stdbool.h>
#include <stdint.h>
#include "nrf.h"
#include "app_util.h"
#ifdef __cplusplus
extern "C" {
#endif
/** @defgroup nrf_esb Enhanced ShockBurst
* @{
* @ingroup proprietary_api
*
* @brief Enhanced ShockBurst (ESB) is a basic protocol that supports two-way data
* packet communication including packet buffering, packet acknowledgment,
* and automatic retransmission of lost packets.
*/
/** @name Debug pins
* @{
* @brief If NRF_ESB_DEBUG is defined, these GPIO pins can be used for debug timing.
*/
#ifndef NRF52840_XXAA
#define DEBUGPIN1 12 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every radio interrupt.
#define DEBUGPIN2 13 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every NRF_RADIO->EVENTS_END.
#define DEBUGPIN3 14 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every NRF_RADIO->EVENTS_DISABLED.
#define DEBUGPIN4 15 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set when the radio is set to start transmission.
#else
#define DEBUGPIN1 24 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every radio interrupt.
#define DEBUGPIN2 25 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every NRF_RADIO->EVENTS_END.
#define DEBUGPIN3 26 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set with every NRF_RADIO->EVENTS_DISABLED.
#define DEBUGPIN4 27 //!< If NRF_ESB_DEBUG is defined, this GPIO pin is set when the radio is set to start transmission.
#endif
#ifdef NRF_ESB_DEBUG
#define DEBUG_PIN_SET(a) (NRF_GPIO->OUTSET = (1 << (a))) //!< Used internally to set debug pins.
#define DEBUG_PIN_CLR(a) (NRF_GPIO->OUTCLR = (1 << (a))) //!< Used internally to clear debug pins.
#else
#define DEBUG_PIN_SET(a) //!< Used internally to set debug pins.
#define DEBUG_PIN_CLR(a) //!< Used internally to clear debug pins.
#endif
/** @} */
// Hardcoded parameters - change if necessary
#ifndef NRF_ESB_MAX_PAYLOAD_LENGTH
#define NRF_ESB_MAX_PAYLOAD_LENGTH 32 //!< The maximum size of the payload. Valid values are 1 to 252.
#endif
#define NRF_ESB_TX_FIFO_SIZE 8 //!< The size of the transmission first-in, first-out buffer.
#define NRF_ESB_RX_FIFO_SIZE 8 //!< The size of the reception first-in, first-out buffer.
// 252 is the largest possible payload size according to the nRF5 architecture.
STATIC_ASSERT(NRF_ESB_MAX_PAYLOAD_LENGTH <= 252);
#define NRF_ESB_SYS_TIMER NRF_TIMER2 //!< The timer that is used by the module.
#define NRF_ESB_SYS_TIMER_IRQ_Handler TIMER2_IRQHandler //!< The handler that is used by @ref NRF_ESB_SYS_TIMER.
#define NRF_ESB_PPI_TIMER_START 10 //!< The PPI channel used for starting the timer.
#define NRF_ESB_PPI_TIMER_STOP 11 //!< The PPI channel used for stopping the timer.
#define NRF_ESB_PPI_RX_TIMEOUT 12 //!< The PPI channel used for RX time-out.
#define NRF_ESB_PPI_TX_START 13 //!< The PPI channel used for starting TX.
#ifndef NRF_ESB_PIPE_COUNT
#define NRF_ESB_PIPE_COUNT 8 //!< The maximum number of pipes allowed in the API, can be used if you need to restrict the number of pipes used. Must be 8 or lower because of architectural limitations.
#endif
STATIC_ASSERT(NRF_ESB_PIPE_COUNT <= 8);
/**@cond NO_DOXYGEN */
#ifdef NRF52832_XXAA
// nRF52 address fix timer and PPI defines
#define NRF_ESB_PPI_BUGFIX1 9
#define NRF_ESB_PPI_BUGFIX2 8
#define NRF_ESB_PPI_BUGFIX3 7
#define NRF_ESB_BUGFIX_TIMER NRF_TIMER3
#define NRF_ESB_BUGFIX_TIMER_IRQn TIMER3_IRQn
#define NRF_ESB_BUGFIX_TIMER_IRQHandler TIMER3_IRQHandler
#endif
/** @endcond */
// Interrupt flags
#define NRF_ESB_INT_TX_SUCCESS_MSK 0x01 //!< The flag used to indicate a success since the last event.
#define NRF_ESB_INT_TX_FAILED_MSK 0x02 //!< The flag used to indicate a failure since the last event.
#define NRF_ESB_INT_RX_DR_MSK 0x04 //!< The flag used to indicate that a packet was received since the last event.
#define NRF_ESB_PID_RESET_VALUE 0xFF //!< Invalid PID value that is guaranteed to not collide with any valid PID value.
#define NRF_ESB_PID_MAX 3 //!< The maximum value for PID.
#define NRF_ESB_CRC_RESET_VALUE 0xFFFF //!< The CRC reset value.
#define ESB_EVT_IRQ SWI0_IRQn //!< The ESB event IRQ number when running on an nRF5 device.
#define ESB_EVT_IRQHandler SWI0_IRQHandler //!< The handler for @ref ESB_EVT_IRQ when running on an nRF5 device.
#if defined(NRF52_SERIES)
#define ESB_IRQ_PRIORITY_MSK 0x07 //!< The mask used to enforce a valid IRQ priority.
#else
#define ESB_IRQ_PRIORITY_MSK 0x03 //!< The mask used to enforce a valid IRQ priority.
#endif
/** @brief Default address configuration for ESB.
* @details Roughly equal to the nRF24Lxx default (except for the number of pipes, because more pipes are supported). */
#define NRF_ESB_ADDR_DEFAULT \
{ \
.base_addr_p0 = { 0xE7, 0xE7, 0xE7, 0xE7 }, \
.base_addr_p1 = { 0xC2, 0xC2, 0xC2, 0xC2 }, \
.pipe_prefixes = { 0xE7, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8 }, \
.addr_length = 5, \
.num_pipes = NRF_ESB_PIPE_COUNT, \
.rf_channel = 2, \
.rx_pipes_enabled = 0xFF \
}
/** @brief Default radio parameters.
* @details Roughly equal to the nRF24Lxx default parameters (except for CRC, which is set to 16 bit, and protocol, which is set to DPL). */
#define NRF_ESB_DEFAULT_CONFIG {.protocol = NRF_ESB_PROTOCOL_ESB_DPL, \
.mode = NRF_ESB_MODE_PTX, \
.event_handler = 0, \
.bitrate = NRF_ESB_BITRATE_2MBPS, \
.crc = NRF_ESB_CRC_16BIT, \
.tx_output_power = NRF_ESB_TX_POWER_0DBM, \
.retransmit_delay = 250, \
.retransmit_count = 3, \
.tx_mode = NRF_ESB_TXMODE_AUTO, \
.radio_irq_priority = 1, \
.event_irq_priority = 2, \
.payload_length = 32, \
.selective_auto_ack = false \
}
/** @brief Default legacy radio parameters. Identical to the nRF24Lxx defaults. */
#define NRF_ESB_LEGACY_CONFIG {.protocol = NRF_ESB_PROTOCOL_ESB, \
.mode = NRF_ESB_MODE_PTX, \
.event_handler = 0, \
.bitrate = NRF_ESB_BITRATE_2MBPS, \
.crc = NRF_ESB_CRC_8BIT, \
.tx_output_power = NRF_ESB_TX_POWER_0DBM, \
.retransmit_delay = 600, \
.retransmit_count = 3, \
.tx_mode = NRF_ESB_TXMODE_AUTO, \
.radio_irq_priority = 1, \
.event_irq_priority = 2, \
.payload_length = 32, \
.selective_auto_ack = false \
}
/** @brief Macro to create an initializer for a TX data packet.
*
* @details This macro generates an initializer. Using the initializer is more efficient
* than setting the individual parameters dynamically.
*
* @param[in] _pipe The pipe to use for the data packet.
* @param[in] ... Comma separated list of character data to put in the TX buffer.
* Supported values consist of 1 to 63 characters.
*
* @return Initializer that sets up the pipe, length, and byte array for content of the TX data.
*/
#define NRF_ESB_CREATE_PAYLOAD(_pipe, ...) \
{.pipe = _pipe, .length = NUM_VA_ARGS(__VA_ARGS__), .data = {__VA_ARGS__}}; \
STATIC_ASSERT(NUM_VA_ARGS(__VA_ARGS__) > 0 && NUM_VA_ARGS(__VA_ARGS__) <= 63)
/**@brief Enhanced ShockBurst protocols. */
typedef enum {
NRF_ESB_PROTOCOL_ESB, /**< Enhanced ShockBurst with fixed payload length. */
NRF_ESB_PROTOCOL_ESB_DPL /**< Enhanced ShockBurst with dynamic payload length. */
} nrf_esb_protocol_t;
/**@brief Enhanced ShockBurst modes. */
typedef enum {
NRF_ESB_MODE_PTX, /**< Primary transmitter mode. */
NRF_ESB_MODE_PRX /**< Primary receiver mode. */
} nrf_esb_mode_t;
/**@brief Enhanced ShockBurst bitrate modes. */
typedef enum {
NRF_ESB_BITRATE_2MBPS = RADIO_MODE_MODE_Nrf_2Mbit, /**< 2 Mb radio mode. */
NRF_ESB_BITRATE_1MBPS = RADIO_MODE_MODE_Nrf_1Mbit, /**< 1 Mb radio mode. */
#if defined(RADIO_MODE_MODE_Nrf_250Kbit)
NRF_ESB_BITRATE_250KBPS = RADIO_MODE_MODE_Nrf_250Kbit, /**< 250 Kb radio mode. */
#endif //!( defined(NRF52840_XXAA) || defined(NRF52810_XXAA) || defined(NRF52811_XXAA) )
NRF_ESB_BITRATE_1MBPS_BLE = RADIO_MODE_MODE_Ble_1Mbit, /**< 1 Mb radio mode using @e Bluetooth low energy radio parameters. */
#if defined(RADIO_MODE_MODE_Ble_2Mbit)
NRF_ESB_BITRATE_2MBPS_BLE = RADIO_MODE_MODE_Ble_2Mbit /**< 2 Mb radio mode using @e Bluetooth low energy radio parameters. */
#endif
} nrf_esb_bitrate_t;
/**@brief Enhanced ShockBurst CRC modes. */
typedef enum {
NRF_ESB_CRC_16BIT = RADIO_CRCCNF_LEN_Two, /**< Use two-byte CRC. */
NRF_ESB_CRC_8BIT = RADIO_CRCCNF_LEN_One, /**< Use one-byte CRC. */
NRF_ESB_CRC_OFF = RADIO_CRCCNF_LEN_Disabled /**< Disable CRC. */
} nrf_esb_crc_t;
/**@brief Enhanced ShockBurst radio transmission power modes. */
typedef enum {
#if defined(RADIO_TXPOWER_TXPOWER_Pos8dBm)
NRF_ESB_TX_POWER_8DBM = RADIO_TXPOWER_TXPOWER_Pos8dBm, /**< 8 dBm radio transmit power. */
#endif
#if defined(RADIO_TXPOWER_TXPOWER_Pos7dBm)
NRF_ESB_TX_POWER_7DBM = RADIO_TXPOWER_TXPOWER_Pos7dBm, /**< 7 dBm radio transmit power. */
#endif
#if defined(RADIO_TXPOWER_TXPOWER_Pos6dBm)
NRF_ESB_TX_POWER_6DBM = RADIO_TXPOWER_TXPOWER_Pos6dBm, /**< 6 dBm radio transmit power. */
#endif
#if defined(RADIO_TXPOWER_TXPOWER_Pos5dBm)
NRF_ESB_TX_POWER_5DBM = RADIO_TXPOWER_TXPOWER_Pos5dBm, /**< 5 dBm radio transmit power. */
#endif
NRF_ESB_TX_POWER_4DBM = RADIO_TXPOWER_TXPOWER_Pos4dBm, /**< 4 dBm radio transmit power. */
#if defined(RADIO_TXPOWER_TXPOWER_Pos3dBm)
NRF_ESB_TX_POWER_3DBM = RADIO_TXPOWER_TXPOWER_Pos3dBm, /**< 3 dBm radio transmit power. */
#endif
#if defined(RADIO_TXPOWER_TXPOWER_Pos2dBm)
NRF_ESB_TX_POWER_2DBM = RADIO_TXPOWER_TXPOWER_Pos2dBm, /**< 2 dBm radio transmit power. */
#endif
NRF_ESB_TX_POWER_0DBM = RADIO_TXPOWER_TXPOWER_0dBm, /**< 0 dBm radio transmit power. */
NRF_ESB_TX_POWER_NEG4DBM = RADIO_TXPOWER_TXPOWER_Neg4dBm, /**< -4 dBm radio transmit power. */
NRF_ESB_TX_POWER_NEG8DBM = RADIO_TXPOWER_TXPOWER_Neg8dBm, /**< -8 dBm radio transmit power. */
NRF_ESB_TX_POWER_NEG12DBM = RADIO_TXPOWER_TXPOWER_Neg12dBm, /**< -12 dBm radio transmit power. */
NRF_ESB_TX_POWER_NEG16DBM = RADIO_TXPOWER_TXPOWER_Neg16dBm, /**< -16 dBm radio transmit power. */
NRF_ESB_TX_POWER_NEG20DBM = RADIO_TXPOWER_TXPOWER_Neg20dBm, /**< -20 dBm radio transmit power. */
NRF_ESB_TX_POWER_NEG30DBM = RADIO_TXPOWER_TXPOWER_Neg30dBm, /**< -30 dBm radio transmit power. */
NRF_ESB_TX_POWER_NEG40DBM = RADIO_TXPOWER_TXPOWER_Neg40dBm /**< -40 dBm radio transmit power. */
} nrf_esb_tx_power_t;
/**@brief Enhanced ShockBurst transmission modes. */
typedef enum {
NRF_ESB_TXMODE_AUTO, /**< Automatic TX mode: When the TX FIFO contains packets and the radio is idle, packets are sent automatically. */
NRF_ESB_TXMODE_MANUAL, /**< Manual TX mode: Packets are not sent until @ref nrf_esb_start_tx is called. This mode can be used to ensure consistent packet timing. */
NRF_ESB_TXMODE_MANUAL_START /**< Manual start TX mode: Packets are not sent until @ref nrf_esb_start_tx is called. Then, transmission continues automatically until the TX FIFO is empty. */
} nrf_esb_tx_mode_t;
/**@brief Enhanced ShockBurst event IDs used to indicate the type of the event. */
typedef enum
{
NRF_ESB_EVENT_TX_SUCCESS, /**< Event triggered on TX success. */
NRF_ESB_EVENT_TX_FAILED, /**< Event triggered on TX failure. */
NRF_ESB_EVENT_RX_RECEIVED /**< Event triggered on RX received. */
} nrf_esb_evt_id_t;
/**@brief Enhanced ShockBurst payload.
*
* @details The payload is used both for transmissions and for acknowledging a
* received packet with a payload.
*/
typedef struct
{
uint8_t length; //!< Length of the packet (maximum value is @ref NRF_ESB_MAX_PAYLOAD_LENGTH).
uint8_t pipe; //!< Pipe used for this payload.
int8_t rssi; //!< RSSI for the received packet.
uint8_t noack; //!< Flag indicating that this packet will not be acknowledgement. Flag is ignored when selective auto ack is enabled.
uint8_t pid; //!< PID assigned during communication.
uint8_t data[NRF_ESB_MAX_PAYLOAD_LENGTH]; //!< The payload data.
} nrf_esb_payload_t;
/**@brief Enhanced ShockBurst event. */
typedef struct
{
nrf_esb_evt_id_t evt_id; //!< Enhanced ShockBurst event ID.
uint32_t tx_attempts; //!< Number of TX retransmission attempts.
} nrf_esb_evt_t;
/**@brief Definition of the event handler for the module. */
typedef void (* nrf_esb_event_handler_t)(nrf_esb_evt_t const * p_event);
/**@brief Main configuration structure for the module. */
typedef struct
{
nrf_esb_protocol_t protocol; //!< Enhanced ShockBurst protocol.
nrf_esb_mode_t mode; //!< Enhanced ShockBurst mode.
nrf_esb_event_handler_t event_handler; //!< Enhanced ShockBurst event handler.
// General RF parameters
nrf_esb_bitrate_t bitrate; //!< Enhanced ShockBurst bitrate mode.
nrf_esb_crc_t crc; //!< Enhanced ShockBurst CRC mode.
nrf_esb_tx_power_t tx_output_power; //!< Enhanced ShockBurst radio transmission power mode.
uint16_t retransmit_delay; //!< The delay between each retransmission of unacknowledged packets.
uint16_t retransmit_count; //!< The number of retransmission attempts before transmission fail.
// Control settings
nrf_esb_tx_mode_t tx_mode; //!< Enhanced ShockBurst transmission mode.
uint8_t radio_irq_priority; //!< nRF radio interrupt priority.
uint8_t event_irq_priority; //!< ESB event interrupt priority.
uint8_t payload_length; //!< Length of the payload (maximum length depends on the platforms that are used on each side).
bool selective_auto_ack; //!< Enable or disable selective auto acknowledgement. When this feature is disabled, all packets will be acknowledged ignoring the noack field.
} nrf_esb_config_t;
/**@brief Function for initializing the Enhanced ShockBurst module.
*
* @param p_config Parameters for initializing the module.
*
* @retval NRF_SUCCESS If initialization was successful.
* @retval NRF_ERROR_NULL If the @p p_config argument was NULL.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
*/
uint32_t nrf_esb_init(nrf_esb_config_t const * p_config);
/**@brief Function for suspending the Enhanced ShockBurst module.
*
* Calling this function stops ongoing communications without changing the queues.
*
* @retval NRF_SUCCESS If Enhanced ShockBurst was suspended.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
*/
uint32_t nrf_esb_suspend(void);
/**@brief Function for disabling the Enhanced ShockBurst module.
*
* Calling this function disables the Enhanced ShockBurst module immediately.
* Doing so might stop ongoing communications.
*
* @note All queues are flushed by this function.
*
* @retval NRF_SUCCESS If Enhanced ShockBurst was disabled.
*/
uint32_t nrf_esb_disable(void);
/**@brief Function for checking if the Enhanced ShockBurst module is idle.
*
* @retval true If the module is idle.
* @retval false If the module is busy.
*/
bool nrf_esb_is_idle(void);
/**@brief Function for writing a payload for transmission or acknowledgement.
*
* This function writes a payload that is added to the queue. When the module is in PTX mode, the
* payload is queued for a regular transmission. When the module is in PRX mode, the payload
* is queued for when a packet is received that requires an acknowledgement with payload.
*
* @param[in] p_payload Pointer to the structure that contains information and state of the payload.
*
* @retval NRF_SUCCESS If the payload was successfully queued for writing.
* @retval NRF_ERROR_NULL If the required parameter was NULL.
* @retval NRF_INVALID_STATE If the module is not initialized.
* @retval NRF_ERROR_NO_MEM If the TX FIFO is full.
* @retval NRF_ERROR_INVALID_LENGTH If the payload length was invalid (zero or larger than the allowed maximum).
*/
uint32_t nrf_esb_write_payload(nrf_esb_payload_t const * p_payload);
/**@brief Function for reading an RX payload.
*
* @param[in,out] p_payload Pointer to the structure that contains information and state of the payload.
*
* @retval NRF_SUCCESS If the data was read successfully.
* @retval NRF_ERROR_NULL If the required parameter was NULL.
* @retval NRF_INVALID_STATE If the module is not initialized.
*/
uint32_t nrf_esb_read_rx_payload(nrf_esb_payload_t * p_payload);
/**@brief Function for starting transmission.
*
* @retval NRF_SUCCESS If the TX started successfully.
* @retval NRF_ERROR_BUFFER_EMPTY If the TX did not start because the FIFO buffer is empty.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
*/
uint32_t nrf_esb_start_tx(void);
/**@brief Function for starting to transmit data from the FIFO buffer.
*
* @retval NRF_SUCCESS If the transmission was started successfully.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
*/
uint32_t nrf_esb_start_rx(void);
/** @brief Function for stopping data reception.
*
* @retval NRF_SUCCESS If data reception was stopped successfully.
* @retval NRF_ESB_ERROR_NOT_IN_RX_MODE If the function failed because the module is not in RX mode.
*/
uint32_t nrf_esb_stop_rx(void);
/**@brief Function for removing remaining items from the TX buffer.
*
* This function clears the TX FIFO buffer.
*
* @retval NRF_SUCCESS If pending items in the TX buffer were successfully cleared.
* @retval NRF_INVALID_STATE If the module is not initialized.
*/
uint32_t nrf_esb_flush_tx(void);
/**@brief Function for removing the newest entry from the TX buffer.
*
* This function will remove the most recently added element from the FIFO queue.
*
* @retval NRF_SUCCESS If the operation completed successfully.
* @retval NRF_INVALID_STATE If the module is not initialized.
* @retval NRF_ERROR_BUFFER_EMPTY If there are no items in the queue to remove.
*/
uint32_t nrf_esb_pop_tx(void);
/**@brief Function for removing the oldest entry from the TX buffer.
*
* This function will remove the next element scheduled to be sent from the TX FIFO queue.
* This is useful if you want to skip a packet which was never acknowledged.
*
* @retval NRF_SUCCESS If the operation completed successfully.
* @retval NRF_INVALID_STATE If the module is not initialized.
* @retval NRF_ERROR_BUFFER_EMPTY If there are no items in the queue to remove.
*/
uint32_t nrf_esb_skip_tx(void);
/**@brief Function for removing remaining items from the RX buffer.
*
* @retval NRF_SUCCESS If the pending items in the RX buffer were successfully cleared.
* @retval NRF_INVALID_STATE If the module is not initialized.
*/
uint32_t nrf_esb_flush_rx(void);
/**@brief Function for setting the length of the address.
*
* @param[in] length Length of the ESB address (in bytes).
*
* @retval NRF_SUCCESS If the address length was set successfully.
* @retval NRF_ERROR_INVALID_PARAM If the address length was invalid.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
*/
uint32_t nrf_esb_set_address_length(uint8_t length);
/**@brief Function for setting the base address for pipe 0.
*
* @param[in] p_addr Pointer to the address data.
*
* @retval NRF_SUCCESS If the base address was set successfully.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
* @retval NRF_ERROR_INVALID_PARAM If the function failed because the address given was too close to a zero address.
* @retval NRF_ERROR_NULL If the required parameter was NULL.
*/
uint32_t nrf_esb_set_base_address_0(uint8_t const * p_addr);
/**@brief Function for setting the base address for pipe 1 to pipe 7.
*
* @param[in] p_addr Pointer to the address data.
*
* @retval NRF_SUCCESS If the base address was set successfully.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
* @retval NRF_ERROR_INVALID_PARAM If the function failed because the address given was too close to a zero address.
* @retval NRF_ERROR_NULL If the required parameter was NULL.
*/
uint32_t nrf_esb_set_base_address_1(uint8_t const * p_addr);
/**@brief Function for setting the number of pipes and the pipe prefix addresses.
*
* This function configures the number of available pipes, enables the pipes,
* and sets their prefix addresses.
*
* @param[in] p_prefixes Pointer to a char array that contains the prefix for each pipe.
* @param[in] num_pipes Number of pipes. Must be less than or equal to @ref NRF_ESB_PIPE_COUNT.
*
* @retval NRF_SUCCESS If the prefix addresses were set successfully.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
* @retval NRF_ERROR_NULL If a required parameter was NULL.
* @retval NRF_ERROR_INVALID_PARAM If an invalid number of pipes was given or if the address given was too close to a zero address.
*/
uint32_t nrf_esb_set_prefixes(uint8_t const * p_prefixes, uint8_t num_pipes);
/**@brief Function for enabling pipes.
*
* The @p enable_mask parameter must contain the same number of pipes as has been configured
* with @ref nrf_esb_set_prefixes. This number may not be greater than the number defined by
* @ref NRF_ESB_PIPE_COUNT
*
* @param enable_mask Bitfield mask to enable or disable pipes. Setting a bit to
* 0 disables the pipe. Setting a bit to 1 enables the pipe.
*
* @retval NRF_SUCCESS If the pipes were enabled and disabled successfully.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
* @retval NRF_ERROR_INVALID_PARAM If the function failed because the address given was too close to a zero address.
*/
uint32_t nrf_esb_enable_pipes(uint8_t enable_mask);
/**@brief Function for updating the prefix for a pipe.
*
* @param pipe Pipe for which to set the prefix.
* @param prefix Prefix to set for the pipe.
*
* @retval NRF_SUCCESS If the operation completed successfully.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
* @retval NRF_ERROR_INVALID_PARAM If the given pipe number was invalid or if the address given was too close to a zero address.
*/
uint32_t nrf_esb_update_prefix(uint8_t pipe, uint8_t prefix);
/** @brief Function for setting the channel to use for the radio.
*
* The module must be in an idle state to call this function. As a PTX, the
* application must wait for an idle state and as a PRX, the application must stop RX
* before changing the channel. After changing the channel, operation can be resumed.
*
* @param[in] channel Channel to use for radio.
*
* @retval NRF_SUCCESS If the operation completed successfully.
* @retval NRF_INVALID_STATE If the module is not initialized.
* @retval NRF_ERROR_BUSY If the module was not in idle state.
* @retval NRF_ERROR_INVALID_PARAM If the channel is invalid (larger than 100).
*/
uint32_t nrf_esb_set_rf_channel(uint32_t channel);
/**@brief Function for getting the current radio channel.
*
* @param[in, out] p_channel Pointer to the channel data.
*
* @retval NRF_SUCCESS If the operation completed successfully.
* @retval NRF_ERROR_NULL If the required parameter was NULL.
*/
uint32_t nrf_esb_get_rf_channel(uint32_t * p_channel);
/**@brief Function for setting the radio output power.
*
* @param[in] tx_output_power Output power.
*
* @retval NRF_SUCCESS If the operation completed successfully.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
*/
uint32_t nrf_esb_set_tx_power(nrf_esb_tx_power_t tx_output_power);
/**@brief Function for setting the packet retransmit delay.
*
* @param[in] delay Delay between retransmissions.
*
* @retval NRF_SUCCESS If the operation completed successfully.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
*/
uint32_t nrf_esb_set_retransmit_delay(uint16_t delay);
/**@brief Function for setting the number of retransmission attempts.
*
* @param[in] count Number of retransmissions.
*
* @retval NRF_SUCCESS If the operation completed successfully.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
*/
uint32_t nrf_esb_set_retransmit_count(uint16_t count);
/**@brief Function for setting the radio bitrate.
*
* @param[in] bitrate Radio bitrate.
*
* @retval NRF_SUCCESS If the operation completed successfully.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
*/
uint32_t nrf_esb_set_bitrate(nrf_esb_bitrate_t bitrate);
/**@brief Function for reusing a packet ID for a specific pipe.
*
* The ESB protocol uses a 2-bit sequence number (packet ID) to identify
* retransmitted packets. By default, the packet ID is incremented for every
* uploaded packet. Use this function to prevent this and send two different
* packets with the same packet ID.
*
* @param[in] pipe Pipe.
*
* @retval NRF_SUCCESS If the operation completed successfully.
* @retval NRF_ERROR_BUSY If the function failed because the radio is busy.
*/
uint32_t nrf_esb_reuse_pid(uint8_t pipe);
/** @} */
#ifdef __cplusplus
}
#endif
#endif // NRF_ESB