1764 lines
59 KiB
C
Raw Normal View History

2025-08-19 09:49:41 +08:00
/**
* Copyright (c) 2016 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "nrf_error.h"
#include "nrf_esb.h"
#include "nrf_esb_error_codes.h"
#include "nrf_gpio.h"
#include <string.h>
#include <stddef.h>
#include "sdk_common.h"
#include "sdk_macros.h"
#include "app_util.h"
#include "nrf_delay.h"
#define BIT_MASK_UINT_8(x) (0xFF >> (8 - (x)))
// Constant parameters
#define RX_WAIT_FOR_ACK_TIMEOUT_US_2MBPS (48) /**< 2 Mb RX wait for acknowledgment time-out value. Smallest reliable value - 43. */
#define RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS (73) /**< 1 Mb RX wait for acknowledgment time-out value. Smallest reliable value - 68. */
#define RX_WAIT_FOR_ACK_TIMEOUT_US_250KBPS (250) /**< 250 Kb RX wait for acknowledgment time-out value. */
#define RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS_BLE (73) /**< 1 Mb RX wait for acknowledgment time-out (combined with BLE). Smallest reliable value - 68.*/
#define RETRANSMIT_DELAY_US_OFFSET (62) /**< Never retransmit before the wait for ack time plus this offset. */
// Interrupt flags
#define NRF_ESB_INT_TX_SUCCESS_MSK 0x01 /**< Interrupt mask value for TX success. */
#define NRF_ESB_INT_TX_FAILED_MSK 0x02 /**< Interrupt mask value for TX failure. */
#define NRF_ESB_INT_RX_DATA_RECEIVED_MSK 0x04 /**< Interrupt mask value for RX_DR. */
#define NRF_ESB_PID_RESET_VALUE 0xFF /**< Invalid PID value which is guaranteed to not collide with any valid PID value. */
#define NRF_ESB_PID_MAX 3 /**< Maximum value for PID. */
#define NRF_ESB_CRC_RESET_VALUE 0xFFFF /**< CRC reset value. */
// Internal Enhanced ShockBurst module state.
typedef enum {
NRF_ESB_STATE_IDLE, /**< Module idle. */
NRF_ESB_STATE_PTX_TX, /**< Module transmitting without acknowledgment. */
NRF_ESB_STATE_PTX_TX_ACK, /**< Module transmitting with acknowledgment. */
NRF_ESB_STATE_PTX_RX_ACK, /**< Module transmitting with acknowledgment and reception of payload with the acknowledgment response. */
NRF_ESB_STATE_PRX, /**< Module receiving packets without acknowledgment. */
NRF_ESB_STATE_PRX_SEND_ACK, /**< Module transmitting acknowledgment in RX mode. */
} nrf_esb_mainstate_t;
#define DISABLE_RF_IRQ() NVIC_DisableIRQ(RADIO_IRQn)
#define ENABLE_RF_IRQ() NVIC_EnableIRQ(RADIO_IRQn)
#define _RADIO_SHORTS_COMMON ( RADIO_SHORTS_READY_START_Msk | RADIO_SHORTS_END_DISABLE_Msk | \
RADIO_SHORTS_ADDRESS_RSSISTART_Msk | RADIO_SHORTS_DISABLED_RSSISTOP_Msk )
#define VERIFY_PAYLOAD_LENGTH(p) \
do \
{ \
if (p->length == 0 || \
p->length > NRF_ESB_MAX_PAYLOAD_LENGTH || \
(m_config_local.protocol == NRF_ESB_PROTOCOL_ESB && \
p->length > m_config_local.payload_length)) \
{ \
return NRF_ERROR_INVALID_LENGTH; \
} \
}while (0)
/* @brief Structure holding pipe info PID and CRC and acknowledgment payload. */
typedef struct
{
uint16_t crc; /**< CRC value of the last received packet (Used to detect retransmits). */
uint8_t pid; /**< Packet ID of the last received packet (Used to detect retransmits). */
bool ack_payload; /**< Flag indicating the state of the transmission of acknowledgment payloads. */
} pipe_info_t;
/* @brief Structure used by the PRX to organize ACK payloads for multiple pipes. */
typedef struct
{
nrf_esb_payload_t * p_payload; /**< Pointer to the ACK payload. */
bool in_use; /**< Value used to determine if the current payload pointer is used. */
struct nrf_esb_payload_random_access_buf_wrapper_t * p_next; /**< Pointer to the next ACK payload queued on the same pipe. */
} nrf_esb_payload_random_access_buf_wrapper_t;
/* @brief First-in, first-out queue of payloads to be transmitted. */
typedef struct
{
nrf_esb_payload_t * p_payload[NRF_ESB_TX_FIFO_SIZE]; /**< Pointer to the actual queue. */
uint32_t entry_point; /**< Current start of queue. */
uint32_t exit_point; /**< Current end of queue. */
uint32_t count; /**< Current number of elements in the queue. */
} nrf_esb_payload_tx_fifo_t;
/* @brief First-in, first-out queue of received payloads. */
typedef struct
{
nrf_esb_payload_t * p_payload[NRF_ESB_RX_FIFO_SIZE]; /**< Pointer to the actual queue. */
uint32_t entry_point; /**< Current start of queue. */
uint32_t exit_point; /**< Current end of queue. */
uint32_t count; /**< Current number of elements in the queue. */
} nrf_esb_payload_rx_fifo_t;
/**@brief Enhanced ShockBurst address.
*
* Enhanced ShockBurst addresses consist of a base address and a prefix
* that is unique for each pipe. See @ref esb_addressing in the ESB user
* guide for more information.
*/
typedef struct
{
uint8_t base_addr_p0[4]; /**< Base address for pipe 0 encoded in big endian. */
uint8_t base_addr_p1[4]; /**< Base address for pipe 1-7 encoded in big endian. */
uint8_t pipe_prefixes[8]; /**< Address prefix for pipe 0 to 7. */
uint8_t num_pipes; /**< Number of pipes available. */
uint8_t addr_length; /**< Length of the address including the prefix. */
uint8_t rx_pipes_enabled; /**< Bitfield for enabled pipes. */
uint8_t rf_channel; /**< Channel to use (must be between 0 and 100). */
} nrf_esb_address_t;
// Module state
static bool m_esb_initialized = false;
static volatile nrf_esb_mainstate_t m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
static nrf_esb_payload_t * mp_current_payload;
static nrf_esb_event_handler_t m_event_handler;
// Address parameters
__ALIGN(4) static nrf_esb_address_t m_esb_addr = NRF_ESB_ADDR_DEFAULT;
// RF parameters
static nrf_esb_config_t m_config_local;
// TX FIFO
static nrf_esb_payload_t m_tx_fifo_payload[NRF_ESB_TX_FIFO_SIZE];
static nrf_esb_payload_tx_fifo_t m_tx_fifo;
// RX FIFO
static nrf_esb_payload_t m_rx_fifo_payload[NRF_ESB_RX_FIFO_SIZE];
static nrf_esb_payload_rx_fifo_t m_rx_fifo;
// Payload buffers
static uint8_t m_tx_payload_buffer[NRF_ESB_MAX_PAYLOAD_LENGTH + 2];
static uint8_t m_rx_payload_buffer[NRF_ESB_MAX_PAYLOAD_LENGTH + 2];
// Random access buffer variables for better ACK payload handling
nrf_esb_payload_random_access_buf_wrapper_t m_ack_pl_container[NRF_ESB_TX_FIFO_SIZE];
nrf_esb_payload_random_access_buf_wrapper_t * m_ack_pl_container_entry_point_pr_pipe[NRF_ESB_PIPE_COUNT];
// Run time variables
static volatile uint32_t m_interrupt_flags = 0;
static uint8_t m_pids[NRF_ESB_PIPE_COUNT];
static pipe_info_t m_rx_pipe_info[NRF_ESB_PIPE_COUNT];
static volatile uint32_t m_retransmits_remaining;
static volatile uint32_t m_last_tx_attempts;
static volatile uint32_t m_wait_for_ack_timeout_us;
static volatile uint32_t m_radio_shorts_common = _RADIO_SHORTS_COMMON;
// These function pointers are changed dynamically, depending on protocol configuration and state.
static void (*on_radio_disabled)(void) = 0;
static void (*on_radio_end)(void) = 0;
static void (*update_rf_payload_format)(uint32_t payload_length) = 0;
// The following functions are assigned to the function pointers above.
static void on_radio_disabled_tx_noack(void);
static void on_radio_disabled_tx(void);
static void on_radio_disabled_tx_wait_for_ack(void);
static void on_radio_disabled_rx(void);
static void on_radio_disabled_rx_ack(void);
#define NRF_ESB_ADDR_UPDATE_MASK_BASE0 (1 << 0) /*< Mask value to signal updating BASE0 radio address. */
#define NRF_ESB_ADDR_UPDATE_MASK_BASE1 (1 << 1) /*< Mask value to signal updating BASE1 radio address. */
#define NRF_ESB_ADDR_UPDATE_MASK_PREFIX (1 << 2) /*< Mask value to signal updating radio prefixes. */
// Function to do bytewise bit-swap on an unsigned 32-bit value
static uint32_t bytewise_bit_swap(uint8_t const * p_inp)
{
#if __CORTEX_M == (0x04U)
uint32_t inp = (*(uint32_t*)p_inp);
return __REV((uint32_t)__RBIT(inp)); //lint -esym(628, __rev) -esym(526, __rev) -esym(628, __rbit) -esym(526, __rbit) */
#else
uint32_t inp = (p_inp[3] << 24) | (p_inp[2] << 16) | (p_inp[1] << 8) | (p_inp[0]);
inp = (inp & 0xF0F0F0F0) >> 4 | (inp & 0x0F0F0F0F) << 4;
inp = (inp & 0xCCCCCCCC) >> 2 | (inp & 0x33333333) << 2;
inp = (inp & 0xAAAAAAAA) >> 1 | (inp & 0x55555555) << 1;
return inp;
#endif
}
// Convert a base address from nRF24L format to nRF5 format
static uint32_t addr_conv(uint8_t const* p_addr)
{
return __REV(bytewise_bit_swap(p_addr)); //lint -esym(628, __rev) -esym(526, __rev) */
}
#ifdef NRF52832_XXAA
static ret_code_t apply_address_workarounds()
{
if ((NRF_FICR->INFO.VARIANT & 0x0000FF00) == 0x00004200) //Check if the device is an nRF52832 Rev. 1.
{
// Workaround for nRF52832 Rev 1 erratas
// Set up radio parameters.
NRF_RADIO->MODECNF0 = (NRF_RADIO->MODECNF0 & ~RADIO_MODECNF0_RU_Msk) | RADIO_MODECNF0_RU_Default << RADIO_MODECNF0_RU_Pos;
// Workaround for nRF52832 Rev 1 Errata 102 and nRF52832 Rev 1 Errata 106. This will reduce sensitivity by 3dB.
*((volatile uint32_t *)0x40001774) = (*((volatile uint32_t *)0x40001774) & 0xFFFFFFFE) | 0x01000000;
}
if ((NRF_FICR->INFO.VARIANT & 0x0000FF00) == 0x00004500)//Check if the device is an nRF52832 Rev. 2.
{
/*
Workaround for nRF52832 Rev 2 Errata 143
Check if the most significant bytes of address 0 (including prefix) match those of another address.
It's recommended to use a unique address 0 since this will avoid the 3dBm penalty incurred from the workaround.
*/
uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
// Load the two addresses before comparing them to ensure defined ordering of volatile accesses.
uint32_t addr0 = NRF_RADIO->BASE0 & base_address_mask;
uint32_t addr1 = NRF_RADIO->BASE1 & base_address_mask;
if (addr0 == addr1)
{
uint32_t prefix0 = NRF_RADIO->PREFIX0 & 0x000000FF;
uint32_t prefix1 = (NRF_RADIO->PREFIX0 & 0x0000FF00) >> 8;
uint32_t prefix2 = (NRF_RADIO->PREFIX0 & 0x00FF0000) >> 16;
uint32_t prefix3 = (NRF_RADIO->PREFIX0 & 0xFF000000) >> 24;
uint32_t prefix4 = NRF_RADIO->PREFIX1 & 0x000000FF;
uint32_t prefix5 = (NRF_RADIO->PREFIX1 & 0x0000FF00) >> 8;
uint32_t prefix6 = (NRF_RADIO->PREFIX1 & 0x00FF0000) >> 16;
uint32_t prefix7 = (NRF_RADIO->PREFIX1 & 0xFF000000) >> 24;
if (prefix0 == prefix1 || prefix0 == prefix2 || prefix0 == prefix3 || prefix0 == prefix4 ||
prefix0 == prefix5 || prefix0 == prefix6 || prefix0 == prefix7)
{
// This will cause a 3dBm sensitivity loss, avoid using such address combinations if possible.
*(volatile uint32_t *) 0x40001774 = ((*(volatile uint32_t *) 0x40001774) & 0xfffffffe) | 0x01000000;
}
}
}
return NRF_SUCCESS;
}
#endif
static void update_rf_payload_format_esb_dpl(uint32_t payload_length)
{
#if (NRF_ESB_MAX_PAYLOAD_LENGTH <= 32)
// Using 6 bits for length
NRF_RADIO->PCNF0 = (0 << RADIO_PCNF0_S0LEN_Pos) |
(6 << RADIO_PCNF0_LFLEN_Pos) |
(3 << RADIO_PCNF0_S1LEN_Pos) ;
#else
// Using 8 bits for length
NRF_RADIO->PCNF0 = (0 << RADIO_PCNF0_S0LEN_Pos) |
(8 << RADIO_PCNF0_LFLEN_Pos) |
(3 << RADIO_PCNF0_S1LEN_Pos) ;
#endif
NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled << RADIO_PCNF1_WHITEEN_Pos) |
(RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |
((m_esb_addr.addr_length - 1) << RADIO_PCNF1_BALEN_Pos) |
(0 << RADIO_PCNF1_STATLEN_Pos) |
(NRF_ESB_MAX_PAYLOAD_LENGTH << RADIO_PCNF1_MAXLEN_Pos);
}
static void update_rf_payload_format_esb(uint32_t payload_length)
{
NRF_RADIO->PCNF0 = (1 << RADIO_PCNF0_S0LEN_Pos) |
(0 << RADIO_PCNF0_LFLEN_Pos) |
(1 << RADIO_PCNF0_S1LEN_Pos);
NRF_RADIO->PCNF1 = (RADIO_PCNF1_WHITEEN_Disabled << RADIO_PCNF1_WHITEEN_Pos) |
(RADIO_PCNF1_ENDIAN_Big << RADIO_PCNF1_ENDIAN_Pos) |
((m_esb_addr.addr_length - 1) << RADIO_PCNF1_BALEN_Pos) |
(payload_length << RADIO_PCNF1_STATLEN_Pos) |
(payload_length << RADIO_PCNF1_MAXLEN_Pos);
}
static void update_radio_addresses(uint8_t update_mask)
{
if ((update_mask & NRF_ESB_ADDR_UPDATE_MASK_BASE0) != 0)
{
NRF_RADIO->BASE0 = addr_conv(m_esb_addr.base_addr_p0);
}
if ((update_mask & NRF_ESB_ADDR_UPDATE_MASK_BASE1) != 0)
{
NRF_RADIO->BASE1 = addr_conv(m_esb_addr.base_addr_p1);
}
if ((update_mask & NRF_ESB_ADDR_UPDATE_MASK_PREFIX) != 0)
{
NRF_RADIO->PREFIX0 = bytewise_bit_swap(&m_esb_addr.pipe_prefixes[0]);
NRF_RADIO->PREFIX1 = bytewise_bit_swap(&m_esb_addr.pipe_prefixes[4]);
}
}
static void update_radio_tx_power()
{
NRF_RADIO->TXPOWER = m_config_local.tx_output_power << RADIO_TXPOWER_TXPOWER_Pos;
}
static bool update_radio_bitrate()
{
NRF_RADIO->MODE = m_config_local.bitrate << RADIO_MODE_MODE_Pos;
switch (m_config_local.bitrate)
{
case NRF_ESB_BITRATE_2MBPS:
#ifdef RADIO_MODE_MODE_Ble_2Mbit
case NRF_ESB_BITRATE_2MBPS_BLE:
#endif
m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_2MBPS;
break;
case NRF_ESB_BITRATE_1MBPS:
m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS;
break;
#ifdef RADIO_MODE_MODE_Nrf_250Kbit
case NRF_ESB_BITRATE_250KBPS:
m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_250KBPS;
break;
#endif
case NRF_ESB_BITRATE_1MBPS_BLE:
m_wait_for_ack_timeout_us = RX_WAIT_FOR_ACK_TIMEOUT_US_1MBPS_BLE;
break;
default:
// Should not be reached
return false;
}
// Ensure that we do not attempt retransmitting before ack timeout.
if (m_config_local.retransmit_delay < m_wait_for_ack_timeout_us + RETRANSMIT_DELAY_US_OFFSET)
{
m_config_local.retransmit_delay = m_wait_for_ack_timeout_us + RETRANSMIT_DELAY_US_OFFSET;
}
return true;
}
static bool update_radio_protocol()
{
switch (m_config_local.protocol)
{
case NRF_ESB_PROTOCOL_ESB_DPL:
update_rf_payload_format = update_rf_payload_format_esb_dpl;
break;
case NRF_ESB_PROTOCOL_ESB:
update_rf_payload_format = update_rf_payload_format_esb;
break;
default:
// Should not be reached
return false;
}
return true;
}
static bool update_radio_crc()
{
switch(m_config_local.crc)
{
case NRF_ESB_CRC_16BIT:
NRF_RADIO->CRCINIT = 0xFFFFUL; // Initial value
NRF_RADIO->CRCPOLY = 0x11021UL; // CRC poly: x^16+x^12^x^5+1
break;
case NRF_ESB_CRC_8BIT:
NRF_RADIO->CRCINIT = 0xFFUL; // Initial value
NRF_RADIO->CRCPOLY = 0x107UL; // CRC poly: x^8+x^2^x^1+1
break;
case NRF_ESB_CRC_OFF:
NRF_RADIO->CRCINIT = 0x00UL;
NRF_RADIO->CRCPOLY = 0x00UL;
break;
default:
return false;
}
NRF_RADIO->CRCCNF = m_config_local.crc << RADIO_CRCCNF_LEN_Pos;
return true;
}
static bool update_radio_parameters()
{
bool params_valid = true;
update_radio_tx_power();
params_valid &= update_radio_bitrate();
params_valid &= update_radio_protocol();
params_valid &= update_radio_crc();
update_rf_payload_format(m_config_local.payload_length);
return params_valid;
}
static void reset_fifos()
{
m_tx_fifo.entry_point = 0;
m_tx_fifo.exit_point = 0;
m_tx_fifo.count = 0;
m_rx_fifo.entry_point = 0;
m_rx_fifo.exit_point = 0;
m_rx_fifo.count = 0;
}
static void initialize_fifos()
{
reset_fifos();
for (int i = 0; i < NRF_ESB_TX_FIFO_SIZE; i++)
{
m_tx_fifo.p_payload[i] = &m_tx_fifo_payload[i];
}
for (int i = 0; i < NRF_ESB_RX_FIFO_SIZE; i++)
{
m_rx_fifo.p_payload[i] = &m_rx_fifo_payload[i];
}
for (int i = 0; i < NRF_ESB_TX_FIFO_SIZE; i++)
{
m_ack_pl_container[i].p_payload = &m_tx_fifo_payload[i];
m_ack_pl_container[i].in_use = false;
m_ack_pl_container[i].p_next = 0;
}
for (int i = 0; i < NRF_ESB_PIPE_COUNT; i++)
{
m_ack_pl_container_entry_point_pr_pipe[i] = 0;
}
}
uint32_t nrf_esb_skip_tx()
{
VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
VERIFY_TRUE(m_tx_fifo.count > 0, NRF_ERROR_BUFFER_EMPTY);
DISABLE_RF_IRQ();
m_tx_fifo.count--;
if (++m_tx_fifo.exit_point >= NRF_ESB_TX_FIFO_SIZE)
{
m_tx_fifo.exit_point = 0;
}
ENABLE_RF_IRQ();
return NRF_SUCCESS;
}
/** @brief Function to push the content of the rx_buffer to the RX FIFO.
*
* The module will point the register NRF_RADIO->PACKETPTR to a buffer for receiving packets.
* After receiving a packet the module will call this function to copy the received data to
* the RX FIFO.
*
* @param pipe Pipe number to set for the packet.
* @param pid Packet ID.
*
* @retval true Operation successful.
* @retval false Operation failed.
*/
static bool rx_fifo_push_rfbuf(uint8_t pipe, uint8_t pid)
{
if (m_rx_fifo.count < NRF_ESB_RX_FIFO_SIZE)
{
if (m_config_local.protocol == NRF_ESB_PROTOCOL_ESB_DPL)
{
if (m_rx_payload_buffer[0] > NRF_ESB_MAX_PAYLOAD_LENGTH)
{
return false;
}
m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length = m_rx_payload_buffer[0];
}
else if (m_config_local.mode == NRF_ESB_MODE_PTX)
{
// Received packet is an acknowledgment
m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length = 0;
}
else
{
m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length = m_config_local.payload_length;
}
memcpy(m_rx_fifo.p_payload[m_rx_fifo.entry_point]->data, &m_rx_payload_buffer[2],
m_rx_fifo.p_payload[m_rx_fifo.entry_point]->length);
m_rx_fifo.p_payload[m_rx_fifo.entry_point]->pipe = pipe;
m_rx_fifo.p_payload[m_rx_fifo.entry_point]->rssi = NRF_RADIO->RSSISAMPLE;
m_rx_fifo.p_payload[m_rx_fifo.entry_point]->pid = pid;
m_rx_fifo.p_payload[m_rx_fifo.entry_point]->noack = !(m_rx_payload_buffer[1] & 0x01);
if (++m_rx_fifo.entry_point >= NRF_ESB_RX_FIFO_SIZE)
{
m_rx_fifo.entry_point = 0;
}
m_rx_fifo.count++;
return true;
}
return false;
}
static void sys_timer_init()
{
// Configure the system timer with a 1 MHz base frequency
NRF_ESB_SYS_TIMER->PRESCALER = 4;
NRF_ESB_SYS_TIMER->BITMODE = TIMER_BITMODE_BITMODE_16Bit;
NRF_ESB_SYS_TIMER->SHORTS = TIMER_SHORTS_COMPARE1_CLEAR_Msk | TIMER_SHORTS_COMPARE1_STOP_Msk;
}
static void ppi_init()
{
NRF_PPI->CH[NRF_ESB_PPI_TIMER_START].EEP = (uint32_t)&NRF_RADIO->EVENTS_READY;
NRF_PPI->CH[NRF_ESB_PPI_TIMER_START].TEP = (uint32_t)&NRF_ESB_SYS_TIMER->TASKS_START;
NRF_PPI->CH[NRF_ESB_PPI_TIMER_STOP].EEP = (uint32_t)&NRF_RADIO->EVENTS_ADDRESS;
NRF_PPI->CH[NRF_ESB_PPI_TIMER_STOP].TEP = (uint32_t)&NRF_ESB_SYS_TIMER->TASKS_SHUTDOWN;
NRF_PPI->CH[NRF_ESB_PPI_RX_TIMEOUT].EEP = (uint32_t)&NRF_ESB_SYS_TIMER->EVENTS_COMPARE[0];
NRF_PPI->CH[NRF_ESB_PPI_RX_TIMEOUT].TEP = (uint32_t)&NRF_RADIO->TASKS_DISABLE;
NRF_PPI->CH[NRF_ESB_PPI_TX_START].EEP = (uint32_t)&NRF_ESB_SYS_TIMER->EVENTS_COMPARE[1];
NRF_PPI->CH[NRF_ESB_PPI_TX_START].TEP = (uint32_t)&NRF_RADIO->TASKS_TXEN;
}
static void start_tx_transaction()
{
bool ack;
m_last_tx_attempts = 1;
// Prepare the payload
mp_current_payload = m_tx_fifo.p_payload[m_tx_fifo.exit_point];
switch (m_config_local.protocol)
{
case NRF_ESB_PROTOCOL_ESB:
update_rf_payload_format(mp_current_payload->length);
m_tx_payload_buffer[0] = mp_current_payload->pid;
m_tx_payload_buffer[1] = 0;
memcpy(&m_tx_payload_buffer[2], mp_current_payload->data, mp_current_payload->length);
NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk | RADIO_INTENSET_READY_Msk;
// Configure the retransmit counter
m_retransmits_remaining = m_config_local.retransmit_count;
on_radio_disabled = on_radio_disabled_tx;
m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX_ACK;
break;
case NRF_ESB_PROTOCOL_ESB_DPL:
ack = !mp_current_payload->noack || !m_config_local.selective_auto_ack;
m_tx_payload_buffer[0] = mp_current_payload->length;
m_tx_payload_buffer[1] = mp_current_payload->pid << 1;
m_tx_payload_buffer[1] |= mp_current_payload->noack ? 0x00 : 0x01;
memcpy(&m_tx_payload_buffer[2], mp_current_payload->data, mp_current_payload->length);
// Handling ack if noack is set to false or if selective auto ack is turned off
if (ack)
{
NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk | RADIO_INTENSET_READY_Msk;
// Configure the retransmit counter
m_retransmits_remaining = m_config_local.retransmit_count;
on_radio_disabled = on_radio_disabled_tx;
m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX_ACK;
}
else
{
NRF_RADIO->SHORTS = m_radio_shorts_common;
NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk;
on_radio_disabled = on_radio_disabled_tx_noack;
m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX;
}
break;
default:
// Should not be reached
break;
}
NRF_RADIO->TXADDRESS = mp_current_payload->pipe;
NRF_RADIO->RXADDRESSES = 1 << mp_current_payload->pipe;
NRF_RADIO->FREQUENCY = m_esb_addr.rf_channel;
NRF_RADIO->PACKETPTR = (uint32_t)m_tx_payload_buffer;
NVIC_ClearPendingIRQ(RADIO_IRQn);
NVIC_EnableIRQ(RADIO_IRQn);
NRF_RADIO->EVENTS_ADDRESS = 0;
NRF_RADIO->EVENTS_PAYLOAD = 0;
NRF_RADIO->EVENTS_DISABLED = 0;
DEBUG_PIN_SET(DEBUGPIN4);
NRF_RADIO->TASKS_TXEN = 1;
}
static void on_radio_disabled_tx_noack()
{
m_interrupt_flags |= NRF_ESB_INT_TX_SUCCESS_MSK;
(void) nrf_esb_skip_tx();
if (m_tx_fifo.count == 0)
{
m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
NVIC_SetPendingIRQ(ESB_EVT_IRQ);
}
else
{
NVIC_SetPendingIRQ(ESB_EVT_IRQ);
start_tx_transaction();
}
}
static void on_radio_disabled_tx()
{
// Remove the DISABLED -> RXEN shortcut, to make sure the radio stays
// disabled after the RX window
NRF_RADIO->SHORTS = m_radio_shorts_common;
// Make sure the timer is started the next time the radio is ready,
// and that it will disable the radio automatically if no packet is
// received by the time defined in m_wait_for_ack_timeout_us
NRF_ESB_SYS_TIMER->CC[0] = m_wait_for_ack_timeout_us;
NRF_ESB_SYS_TIMER->CC[1] = m_config_local.retransmit_delay - 130;
NRF_ESB_SYS_TIMER->TASKS_CLEAR = 1;
NRF_ESB_SYS_TIMER->EVENTS_COMPARE[0] = 0;
NRF_ESB_SYS_TIMER->EVENTS_COMPARE[1] = 0;
NRF_PPI->CHENSET = (1 << NRF_ESB_PPI_TIMER_START) |
(1 << NRF_ESB_PPI_RX_TIMEOUT) |
(1 << NRF_ESB_PPI_TIMER_STOP);
NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TX_START);
NRF_RADIO->EVENTS_END = 0;
if (m_config_local.protocol == NRF_ESB_PROTOCOL_ESB)
{
update_rf_payload_format(0);
}
NRF_RADIO->PACKETPTR = (uint32_t)m_rx_payload_buffer;
on_radio_disabled = on_radio_disabled_tx_wait_for_ack;
m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_RX_ACK;
}
static void on_radio_disabled_tx_wait_for_ack()
{
// This marks the completion of a TX_RX sequence (TX with ACK)
// Make sure the timer will not deactivate the radio if a packet is received
NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TIMER_START) |
(1 << NRF_ESB_PPI_RX_TIMEOUT) |
(1 << NRF_ESB_PPI_TIMER_STOP);
// If the radio has received a packet and the CRC status is OK
if (NRF_RADIO->EVENTS_END && NRF_RADIO->CRCSTATUS != 0)
{
NRF_ESB_SYS_TIMER->TASKS_SHUTDOWN = 1;
NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TX_START);
m_interrupt_flags |= NRF_ESB_INT_TX_SUCCESS_MSK;
m_last_tx_attempts = m_config_local.retransmit_count - m_retransmits_remaining + 1;
(void) nrf_esb_skip_tx();
if (m_config_local.protocol != NRF_ESB_PROTOCOL_ESB && m_rx_payload_buffer[0] > 0)
{
if (rx_fifo_push_rfbuf((uint8_t)NRF_RADIO->TXADDRESS, m_rx_payload_buffer[1] >> 1))
{
m_interrupt_flags |= NRF_ESB_INT_RX_DATA_RECEIVED_MSK;
}
}
if ((m_tx_fifo.count == 0) || (m_config_local.tx_mode == NRF_ESB_TXMODE_MANUAL))
{
m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
NVIC_SetPendingIRQ(ESB_EVT_IRQ);
}
else
{
NVIC_SetPendingIRQ(ESB_EVT_IRQ);
start_tx_transaction();
}
}
else
{
if (m_retransmits_remaining-- == 0)
{
NRF_ESB_SYS_TIMER->TASKS_SHUTDOWN = 1;
NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TX_START);
// All retransmits are expended, and the TX operation is suspended
m_last_tx_attempts = m_config_local.retransmit_count + 1;
m_interrupt_flags |= NRF_ESB_INT_TX_FAILED_MSK;
m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
NVIC_SetPendingIRQ(ESB_EVT_IRQ);
}
else
{
// There are still more retransmits left, TX mode should be
// entered again as soon as the system timer reaches CC[1].
NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
update_rf_payload_format(mp_current_payload->length);
NRF_RADIO->PACKETPTR = (uint32_t)m_tx_payload_buffer;
on_radio_disabled = on_radio_disabled_tx;
m_nrf_esb_mainstate = NRF_ESB_STATE_PTX_TX_ACK;
NRF_ESB_SYS_TIMER->TASKS_START = 1;
NRF_PPI->CHENSET = (1 << NRF_ESB_PPI_TX_START);
if (NRF_ESB_SYS_TIMER->EVENTS_COMPARE[1])
{
NRF_RADIO->TASKS_TXEN = 1;
}
}
}
}
static void clear_events_restart_rx(void)
{
NRF_RADIO->SHORTS = m_radio_shorts_common;
update_rf_payload_format(m_config_local.payload_length);
NRF_RADIO->PACKETPTR = (uint32_t)m_rx_payload_buffer;
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while (NRF_RADIO->EVENTS_DISABLED == 0);
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_TXEN_Msk;
NRF_RADIO->TASKS_RXEN = 1;
}
static void on_radio_disabled_rx(void)
{
bool ack = false;
bool retransmit_payload = false;
bool send_rx_event = true;
pipe_info_t * p_pipe_info;
if (NRF_RADIO->CRCSTATUS == 0)
{
clear_events_restart_rx();
return;
}
if (m_rx_fifo.count >= NRF_ESB_RX_FIFO_SIZE)
{
clear_events_restart_rx();
return;
}
p_pipe_info = &m_rx_pipe_info[NRF_RADIO->RXMATCH];
if (NRF_RADIO->RXCRC == p_pipe_info->crc &&
(m_rx_payload_buffer[1] >> 1) == p_pipe_info->pid
)
{
retransmit_payload = true;
send_rx_event = false;
}
p_pipe_info->pid = m_rx_payload_buffer[1] >> 1;
p_pipe_info->crc = NRF_RADIO->RXCRC;
if ((m_config_local.selective_auto_ack == false) || ((m_rx_payload_buffer[1] & 0x01) == 1))
{
ack = true;
}
if (ack)
{
NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_RXEN_Msk;
switch (m_config_local.protocol)
{
case NRF_ESB_PROTOCOL_ESB_DPL:
{
if (m_tx_fifo.count > 0 && m_ack_pl_container_entry_point_pr_pipe[NRF_RADIO->RXMATCH] != 0)
{
mp_current_payload = m_ack_pl_container_entry_point_pr_pipe[NRF_RADIO->RXMATCH]->p_payload;
// Pipe stays in ACK with payload until TX FIFO is empty
// Do not report TX success on first ack payload or retransmit
if (p_pipe_info->ack_payload == true && !retransmit_payload)
{
uint32_t pipe = NRF_RADIO->RXMATCH;
m_ack_pl_container_entry_point_pr_pipe[pipe]->in_use = false;
m_ack_pl_container_entry_point_pr_pipe[pipe] = (nrf_esb_payload_random_access_buf_wrapper_t *)m_ack_pl_container_entry_point_pr_pipe[pipe]->p_next;
m_tx_fifo.count--;
if (m_tx_fifo.count > 0 && m_ack_pl_container_entry_point_pr_pipe[pipe] != 0)
{
mp_current_payload = m_ack_pl_container_entry_point_pr_pipe[pipe]->p_payload;
}
else mp_current_payload = 0;
// ACK payloads also require TX_DS
// (page 40 of the 'nRF24LE1_Product_Specification_rev1_6.pdf').
m_interrupt_flags |= NRF_ESB_INT_TX_SUCCESS_MSK;
}
if(mp_current_payload != 0)
{
p_pipe_info->ack_payload = true;
update_rf_payload_format(mp_current_payload->length);
m_tx_payload_buffer[0] = mp_current_payload->length;
memcpy(&m_tx_payload_buffer[2],
mp_current_payload->data,
mp_current_payload->length);
}
else
{
p_pipe_info->ack_payload = false;
update_rf_payload_format(0);
m_tx_payload_buffer[0] = 0;
}
}
else
{
p_pipe_info->ack_payload = false;
update_rf_payload_format(0);
m_tx_payload_buffer[0] = 0;
}
m_tx_payload_buffer[1] = m_rx_payload_buffer[1];
}
break;
case NRF_ESB_PROTOCOL_ESB:
{
update_rf_payload_format(0);
m_tx_payload_buffer[0] = m_rx_payload_buffer[0];
m_tx_payload_buffer[1] = 0;
}
break;
}
m_nrf_esb_mainstate = NRF_ESB_STATE_PRX_SEND_ACK;
NRF_RADIO->TXADDRESS = NRF_RADIO->RXMATCH;
NRF_RADIO->PACKETPTR = (uint32_t)m_tx_payload_buffer;
on_radio_disabled = on_radio_disabled_rx_ack;
}
else
{
clear_events_restart_rx();
}
if (send_rx_event)
{
// Push the new packet to the RX buffer and trigger a received event if the operation was
// successful.
if (rx_fifo_push_rfbuf(NRF_RADIO->RXMATCH, p_pipe_info->pid))
{
m_interrupt_flags |= NRF_ESB_INT_RX_DATA_RECEIVED_MSK;
NVIC_SetPendingIRQ(ESB_EVT_IRQ);
}
}
}
static void on_radio_disabled_rx_ack(void)
{
NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_TXEN_Msk;
update_rf_payload_format(m_config_local.payload_length);
NRF_RADIO->PACKETPTR = (uint32_t)m_rx_payload_buffer;
on_radio_disabled = on_radio_disabled_rx;
m_nrf_esb_mainstate = NRF_ESB_STATE_PRX;
}
/**@brief Function for clearing pending interrupts.
*
* @param[in,out] p_interrupts Pointer to the value that holds the current interrupts.
*
* @retval NRF_SUCCESS If the interrupts were cleared successfully.
* @retval NRF_ERROR_NULL If the required parameter was NULL.
* @retval NRF_INVALID_STATE If the module is not initialized.
*/
static uint32_t nrf_esb_get_clear_interrupts(uint32_t * p_interrupts)
{
VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
VERIFY_PARAM_NOT_NULL(p_interrupts);
DISABLE_RF_IRQ();
*p_interrupts = m_interrupt_flags;
m_interrupt_flags = 0;
ENABLE_RF_IRQ();
return NRF_SUCCESS;
}
void RADIO_IRQHandler()
{
if (NRF_RADIO->EVENTS_READY && (NRF_RADIO->INTENSET & RADIO_INTENSET_READY_Msk))
{
NRF_RADIO->EVENTS_READY = 0;
DEBUG_PIN_SET(DEBUGPIN1);
}
if (NRF_RADIO->EVENTS_END && (NRF_RADIO->INTENSET & RADIO_INTENSET_END_Msk))
{
NRF_RADIO->EVENTS_END = 0;
DEBUG_PIN_SET(DEBUGPIN2);
// Call the correct on_radio_end function, depending on the current protocol state
if (on_radio_end)
{
on_radio_end();
}
}
if (NRF_RADIO->EVENTS_DISABLED && (NRF_RADIO->INTENSET & RADIO_INTENSET_DISABLED_Msk))
{
NRF_RADIO->EVENTS_DISABLED = 0;
DEBUG_PIN_SET(DEBUGPIN3);
// Call the correct on_radio_disable function, depending on the current protocol state
if (on_radio_disabled)
{
on_radio_disabled();
}
}
DEBUG_PIN_CLR(DEBUGPIN1);
DEBUG_PIN_CLR(DEBUGPIN2);
DEBUG_PIN_CLR(DEBUGPIN3);
DEBUG_PIN_CLR(DEBUGPIN4);
}
uint32_t nrf_esb_init(nrf_esb_config_t const * p_config)
{
uint32_t err_code;
VERIFY_PARAM_NOT_NULL(p_config);
if (m_esb_initialized)
{
err_code = nrf_esb_disable();
if (err_code != NRF_SUCCESS)
{
return err_code;
}
}
m_event_handler = p_config->event_handler;
memcpy(&m_config_local, p_config, sizeof(nrf_esb_config_t));
m_interrupt_flags = 0;
memset(m_rx_pipe_info, 0, sizeof(m_rx_pipe_info));
memset(m_pids, 0, sizeof(m_pids));
VERIFY_TRUE(update_radio_parameters(), NRF_ERROR_INVALID_PARAM);
// Configure radio address registers according to ESB default values
NRF_RADIO->BASE0 = 0xE7E7E7E7;
NRF_RADIO->BASE1 = 0x43434343;
NRF_RADIO->PREFIX0 = 0x23C343E7;
NRF_RADIO->PREFIX1 = 0x13E363A3;
initialize_fifos();
sys_timer_init();
ppi_init();
NVIC_SetPriority(RADIO_IRQn, m_config_local.radio_irq_priority & ESB_IRQ_PRIORITY_MSK);
NVIC_SetPriority(ESB_EVT_IRQ, m_config_local.event_irq_priority & ESB_IRQ_PRIORITY_MSK);
NVIC_EnableIRQ(ESB_EVT_IRQ);
m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
m_esb_initialized = true;
#ifdef NRF52832_XXAA
if ((NRF_FICR->INFO.VARIANT & 0x0000FF00) == 0x00004500) //Check if the device is an nRF52832 Rev. 2.
//Workaround for nRF52832 rev 2 errata 182
*(volatile uint32_t *) 0x4000173C |= (1 << 10);
#endif
return NRF_SUCCESS;
}
uint32_t nrf_esb_suspend(void)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
// Clear PPI
NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TIMER_START) |
(1 << NRF_ESB_PPI_TIMER_STOP) |
(1 << NRF_ESB_PPI_RX_TIMEOUT) |
(1 << NRF_ESB_PPI_TX_START);
m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
return NRF_SUCCESS;
}
uint32_t nrf_esb_disable(void)
{
// Clear PPI
NRF_PPI->CHENCLR = (1 << NRF_ESB_PPI_TIMER_START) |
(1 << NRF_ESB_PPI_TIMER_STOP) |
(1 << NRF_ESB_PPI_RX_TIMEOUT) |
(1 << NRF_ESB_PPI_TX_START);
m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
m_esb_initialized = false;
reset_fifos();
memset(m_rx_pipe_info, 0, sizeof(m_rx_pipe_info));
memset(m_pids, 0, sizeof(m_pids));
// Disable the radio
NVIC_DisableIRQ(ESB_EVT_IRQ);
NRF_RADIO->SHORTS = RADIO_SHORTS_READY_START_Enabled << RADIO_SHORTS_READY_START_Pos |
RADIO_SHORTS_END_DISABLE_Enabled << RADIO_SHORTS_END_DISABLE_Pos;
return NRF_SUCCESS;
}
bool nrf_esb_is_idle(void)
{
return m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE;
}
void ESB_EVT_IRQHandler(void)
{
ret_code_t err_code;
uint32_t interrupts;
nrf_esb_evt_t event;
event.tx_attempts = m_last_tx_attempts;
err_code = nrf_esb_get_clear_interrupts(&interrupts);
if (err_code == NRF_SUCCESS && m_event_handler != 0)
{
if (interrupts & NRF_ESB_INT_TX_SUCCESS_MSK)
{
event.evt_id = NRF_ESB_EVENT_TX_SUCCESS;
m_event_handler(&event);
}
if (interrupts & NRF_ESB_INT_TX_FAILED_MSK)
{
event.evt_id = NRF_ESB_EVENT_TX_FAILED;
m_event_handler(&event);
}
if (interrupts & NRF_ESB_INT_RX_DATA_RECEIVED_MSK)
{
event.evt_id = NRF_ESB_EVENT_RX_RECEIVED;
m_event_handler(&event);
}
}
}
static nrf_esb_payload_random_access_buf_wrapper_t *find_free_payload_cont(void)
{
for (int i = 0; i < NRF_ESB_TX_FIFO_SIZE; i++)
{
if(!m_ack_pl_container[i].in_use) return &m_ack_pl_container[i];
}
return 0;
}
uint32_t nrf_esb_write_payload(nrf_esb_payload_t const * p_payload)
{
VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
VERIFY_PARAM_NOT_NULL(p_payload);
VERIFY_PAYLOAD_LENGTH(p_payload);
VERIFY_FALSE(m_tx_fifo.count >= NRF_ESB_TX_FIFO_SIZE, NRF_ERROR_NO_MEM);
VERIFY_TRUE(p_payload->pipe < NRF_ESB_PIPE_COUNT, NRF_ERROR_INVALID_PARAM);
DISABLE_RF_IRQ();
if (m_config_local.mode == NRF_ESB_MODE_PTX)
{
memcpy(m_tx_fifo.p_payload[m_tx_fifo.entry_point], p_payload, sizeof(nrf_esb_payload_t));
m_pids[p_payload->pipe] = (m_pids[p_payload->pipe] + 1) % (NRF_ESB_PID_MAX + 1);
m_tx_fifo.p_payload[m_tx_fifo.entry_point]->pid = m_pids[p_payload->pipe];
if (++m_tx_fifo.entry_point >= NRF_ESB_TX_FIFO_SIZE)
{
m_tx_fifo.entry_point = 0;
}
m_tx_fifo.count++;
}
else
{
nrf_esb_payload_random_access_buf_wrapper_t *new_ack_payload;
if((new_ack_payload = find_free_payload_cont()) != 0)
{
new_ack_payload->in_use = true;
new_ack_payload->p_next = 0;
memcpy(new_ack_payload->p_payload, p_payload, sizeof(nrf_esb_payload_t));
m_pids[p_payload->pipe] = (m_pids[p_payload->pipe] + 1) % (NRF_ESB_PID_MAX + 1);
new_ack_payload->p_payload->pid = m_pids[p_payload->pipe];
if(m_ack_pl_container_entry_point_pr_pipe[p_payload->pipe] == 0)
{
m_ack_pl_container_entry_point_pr_pipe[p_payload->pipe] = new_ack_payload;
}
else
{
nrf_esb_payload_random_access_buf_wrapper_t *list_iterator = m_ack_pl_container_entry_point_pr_pipe[p_payload->pipe];
while(list_iterator->p_next != 0)
{
list_iterator = (nrf_esb_payload_random_access_buf_wrapper_t *)list_iterator->p_next;
}
list_iterator->p_next = (struct nrf_esb_payload_random_access_buf_wrapper_t *)new_ack_payload;
}
m_tx_fifo.count++;
}
}
ENABLE_RF_IRQ();
if (m_config_local.mode == NRF_ESB_MODE_PTX &&
m_config_local.tx_mode == NRF_ESB_TXMODE_AUTO &&
m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE)
{
start_tx_transaction();
}
return NRF_SUCCESS;
}
uint32_t nrf_esb_read_rx_payload(nrf_esb_payload_t * p_payload)
{
VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
VERIFY_PARAM_NOT_NULL(p_payload);
if (m_rx_fifo.count == 0)
{
return NRF_ERROR_NOT_FOUND;
}
DISABLE_RF_IRQ();
p_payload->length = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->length;
p_payload->pipe = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->pipe;
p_payload->rssi = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->rssi;
p_payload->pid = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->pid;
p_payload->noack = m_rx_fifo.p_payload[m_rx_fifo.exit_point]->noack;
memcpy(p_payload->data, m_rx_fifo.p_payload[m_rx_fifo.exit_point]->data, p_payload->length);
if (++m_rx_fifo.exit_point >= NRF_ESB_RX_FIFO_SIZE)
{
m_rx_fifo.exit_point = 0;
}
m_rx_fifo.count--;
ENABLE_RF_IRQ();
return NRF_SUCCESS;
}
uint32_t nrf_esb_start_tx(void)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
if (m_tx_fifo.count == 0)
{
return NRF_ERROR_BUFFER_EMPTY;
}
start_tx_transaction();
return NRF_SUCCESS;
}
uint32_t nrf_esb_start_rx(void)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
NRF_RADIO->INTENCLR = 0xFFFFFFFF;
NRF_RADIO->EVENTS_DISABLED = 0;
on_radio_disabled = on_radio_disabled_rx;
NRF_RADIO->SHORTS = m_radio_shorts_common | RADIO_SHORTS_DISABLED_TXEN_Msk;
NRF_RADIO->INTENSET = RADIO_INTENSET_DISABLED_Msk;
m_nrf_esb_mainstate = NRF_ESB_STATE_PRX;
NRF_RADIO->RXADDRESSES = m_esb_addr.rx_pipes_enabled;
NRF_RADIO->FREQUENCY = m_esb_addr.rf_channel;
NRF_RADIO->PACKETPTR = (uint32_t)m_rx_payload_buffer;
NVIC_ClearPendingIRQ(RADIO_IRQn);
NVIC_EnableIRQ(RADIO_IRQn);
NRF_RADIO->EVENTS_ADDRESS = 0;
NRF_RADIO->EVENTS_PAYLOAD = 0;
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_RXEN = 1;
return NRF_SUCCESS;
}
uint32_t nrf_esb_stop_rx(void)
{
if (m_nrf_esb_mainstate == NRF_ESB_STATE_PRX ||
m_nrf_esb_mainstate == NRF_ESB_STATE_PRX_SEND_ACK)
{
NRF_RADIO->SHORTS = 0;
NRF_RADIO->INTENCLR = 0xFFFFFFFF;
on_radio_disabled = NULL;
NRF_RADIO->EVENTS_DISABLED = 0;
NRF_RADIO->TASKS_DISABLE = 1;
while (NRF_RADIO->EVENTS_DISABLED == 0);
m_nrf_esb_mainstate = NRF_ESB_STATE_IDLE;
return NRF_SUCCESS;
}
return NRF_ESB_ERROR_NOT_IN_RX_MODE;
}
uint32_t nrf_esb_flush_tx(void)
{
VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
DISABLE_RF_IRQ();
m_tx_fifo.count = 0;
m_tx_fifo.entry_point = 0;
m_tx_fifo.exit_point = 0;
ENABLE_RF_IRQ();
return NRF_SUCCESS;
}
uint32_t nrf_esb_pop_tx(void)
{
VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
VERIFY_TRUE(m_tx_fifo.count > 0, NRF_ERROR_BUFFER_EMPTY);
DISABLE_RF_IRQ();
if (m_tx_fifo.entry_point == 0)
{
m_tx_fifo.entry_point = (NRF_ESB_TX_FIFO_SIZE-1);
}
else
{
m_tx_fifo.entry_point--;
}
m_tx_fifo.count--;
ENABLE_RF_IRQ();
return NRF_SUCCESS;
}
uint32_t nrf_esb_flush_rx(void)
{
VERIFY_TRUE(m_esb_initialized, NRF_ERROR_INVALID_STATE);
DISABLE_RF_IRQ();
m_rx_fifo.count = 0;
m_rx_fifo.entry_point = 0;
m_rx_fifo.exit_point = 0;
memset(m_rx_pipe_info, 0, sizeof(m_rx_pipe_info));
ENABLE_RF_IRQ();
return NRF_SUCCESS;
}
uint32_t nrf_esb_set_address_length(uint8_t length)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
VERIFY_TRUE(length > 2 && length < 6, NRF_ERROR_INVALID_PARAM);
#ifdef NRF52832_XXAA
uint32_t base_address_mask = length == 5 ? 0xFFFF0000 : 0xFF000000;
if ((NRF_FICR->INFO.VARIANT & 0x0000FF00) == 0x00004200) //Check if the device is an nRF52832 Rev. 1.
{
/*
Workaround for nRF52832 Rev 1 Errata 107
Check if pipe 0 or pipe 1-7 has a 'zero address'.
Avoid using access addresses in the following pattern (where X is don't care):
ADDRLEN=5
BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00
BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX
BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX
BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX
BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00
BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX
BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX
BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX
ADDRLEN=4
BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00
BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX
BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX
BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX
BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
*/
if ((NRF_RADIO->BASE0 & base_address_mask) == 0 && (NRF_RADIO->PREFIX0 & 0x000000FF) == 0)
{
return NRF_ERROR_INVALID_PARAM;
}
if ((NRF_RADIO->BASE1 & base_address_mask) == 0 && ((NRF_RADIO->PREFIX0 & 0x0000FF00) == 0 ||(NRF_RADIO->PREFIX0 & 0x00FF0000) == 0 || (NRF_RADIO->PREFIX0 & 0xFF000000) == 0 ||
(NRF_RADIO->PREFIX1 & 0xFF000000) == 0 || (NRF_RADIO->PREFIX1 & 0x00FF0000) == 0 ||(NRF_RADIO->PREFIX1 & 0x0000FF00) == 0 || (NRF_RADIO->PREFIX1 & 0x000000FF) == 0))
{
return NRF_ERROR_INVALID_PARAM;
}
}
#endif
m_esb_addr.addr_length = length;
update_rf_payload_format(m_config_local.payload_length);
#ifdef NRF52832_XXAA
if ((NRF_FICR->INFO.VARIANT & 0x0000FF00) == 0x00004500) //Check if the device is an nRF52832 Rev. 2.
{
return apply_address_workarounds();
}
else
{
return NRF_SUCCESS;
}
#else
return NRF_SUCCESS;
#endif
}
uint32_t nrf_esb_set_base_address_0(uint8_t const * p_addr)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
VERIFY_PARAM_NOT_NULL(p_addr);
#ifdef NRF52832_XXAA
if ((NRF_FICR->INFO.VARIANT & 0x0000FF00) == 0x00004200) //Check if the device is an nRF52832 Rev. 1.
{
/*
Workaround for nRF52832 Rev 1 Errata 107
Check if pipe 0 or pipe 1-7 has a 'zero address'.
Avoid using access addresses in the following pattern (where X is don't care):
ADDRLEN=5
BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00
BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX
BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX
BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX
BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00
BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX
BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX
BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX
ADDRLEN=4
BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00
BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX
BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX
BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX
BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
*/
uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
if ((addr_conv(p_addr) & base_address_mask) == 0 && (NRF_RADIO->PREFIX0 & 0x000000FF) == 0)
{
return NRF_ERROR_INVALID_PARAM;
}
}
#endif
memcpy(m_esb_addr.base_addr_p0, p_addr, 4);
update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_BASE0);
#ifdef NRF52832_XXAA
return apply_address_workarounds();
#else
return NRF_SUCCESS;
#endif
}
uint32_t nrf_esb_set_base_address_1(uint8_t const * p_addr)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
VERIFY_PARAM_NOT_NULL(p_addr);
#ifdef NRF52832_XXAA
if ((NRF_FICR->INFO.VARIANT & 0x0000FF00) == 0x00004200) //Check if the device is an nRF52832 Rev. 1.
{
/*
Workaround for nRF52832 Rev 1 Errata 107
Check if pipe 0 or pipe 1-7 has a 'zero address'.
Avoid using access addresses in the following pattern (where X is don't care):
ADDRLEN=5
BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00
BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX
BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX
BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX
BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00
BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX
BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX
BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX
ADDRLEN=4
BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00
BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX
BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX
BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX
BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
*/
uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
if ((addr_conv(p_addr) & base_address_mask) == 0 &&
((NRF_RADIO->PREFIX0 & 0x0000FF00) == 0 ||(NRF_RADIO->PREFIX0 & 0x00FF0000) == 0 ||
(NRF_RADIO->PREFIX0 & 0xFF000000) == 0 || (NRF_RADIO->PREFIX1 & 0xFF000000) == 0 ||
(NRF_RADIO->PREFIX1 & 0x00FF0000) == 0 ||(NRF_RADIO->PREFIX1 & 0x0000FF00) == 0 ||
(NRF_RADIO->PREFIX1 & 0x000000FF) == 0))
{
return NRF_ERROR_INVALID_PARAM;
}
}
#endif
memcpy(m_esb_addr.base_addr_p1, p_addr, 4);
update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_BASE1);
#ifdef NRF52832_XXAA
return apply_address_workarounds();
#else
return NRF_SUCCESS;
#endif
}
uint32_t nrf_esb_set_prefixes(uint8_t const * p_prefixes, uint8_t num_pipes)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
VERIFY_PARAM_NOT_NULL(p_prefixes);
VERIFY_TRUE(num_pipes <= NRF_ESB_PIPE_COUNT, NRF_ERROR_INVALID_PARAM);
#ifdef NRF52832_XXAA
if ((NRF_FICR->INFO.VARIANT & 0x0000FF00) == 0x00004200) //Check if the device is an nRF52832 Rev. 1.
{
/*
Workaround for nRF52832 Rev 1 Errata 107
Check if pipe 0 or pipe 1-7 has a 'zero address'.
Avoid using access addresses in the following pattern (where X is don't care):
ADDRLEN=5
BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00
BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX
BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX
BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX
BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00
BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX
BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX
BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX
ADDRLEN=4
BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00
BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX
BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX
BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX
BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
*/
uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
if (num_pipes >= 1 && (NRF_RADIO->BASE0 & base_address_mask) == 0 && p_prefixes[0] == 0)
{
return NRF_ERROR_INVALID_PARAM;
}
if ((NRF_RADIO->BASE1 & base_address_mask) == 0)
{
for (uint8_t i = 1; i < num_pipes; i++)
{
if (p_prefixes[i] == 0)
{
return NRF_ERROR_INVALID_PARAM;
}
}
}
}
#endif
memcpy(m_esb_addr.pipe_prefixes, p_prefixes, num_pipes);
m_esb_addr.num_pipes = num_pipes;
m_esb_addr.rx_pipes_enabled = BIT_MASK_UINT_8(num_pipes);
update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_PREFIX);
#ifdef NRF52832_XXAA
return apply_address_workarounds();
#else
return NRF_SUCCESS;
#endif
}
uint32_t nrf_esb_update_prefix(uint8_t pipe, uint8_t prefix)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
VERIFY_TRUE(pipe < NRF_ESB_PIPE_COUNT, NRF_ERROR_INVALID_PARAM);
#ifdef NRF52832_XXAA
if ((NRF_FICR->INFO.VARIANT & 0x0000FF00) == 0x00004200) //Check if the device is an nRF52832 Rev. 1.
{
/*
Workaround for nRF52832 Rev 1 Errata 107
Check if pipe 0 or pipe 1-7 has a 'zero address'.
Avoid using access addresses in the following pattern (where X is don't care):
ADDRLEN=5
BASE0 = 0x0000XXXX, PREFIX0 = 0xXXXXXX00
BASE1 = 0x0000XXXX, PREFIX0 = 0xXXXX00XX
BASE1 = 0x0000XXXX, PREFIX0 = 0xXX00XXXX
BASE1 = 0x0000XXXX, PREFIX0 = 0x00XXXXXX
BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXXXX00
BASE1 = 0x0000XXXX, PREFIX1 = 0xXXXX00XX
BASE1 = 0x0000XXXX, PREFIX1 = 0xXX00XXXX
BASE1 = 0x0000XXXX, PREFIX1 = 0x00XXXXXX
ADDRLEN=4
BASE0 = 0x00XXXXXX, PREFIX0 = 0xXXXXXX00
BASE1 = 0x00XXXXXX, PREFIX0 = 0xXXXX00XX
BASE1 = 0x00XXXXXX, PREFIX0 = 0xXX00XXXX
BASE1 = 0x00XXXXXX, PREFIX0 = 0x00XXXXXX
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXXXX00
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXXXX00XX
BASE1 = 0x00XXXXXX, PREFIX1 = 0xXX00XXXX
BASE1 = 0x00XXXXXX, PREFIX1 = 0x00XXXXXX
*/
uint32_t base_address_mask = m_esb_addr.addr_length == 5 ? 0xFFFF0000 : 0xFF000000;
if (pipe == 0)
{
if ((NRF_RADIO->BASE0 & base_address_mask) == 0 && prefix == 0)
{
return NRF_ERROR_INVALID_PARAM;
}
}
else
{
if ((NRF_RADIO->BASE1 & base_address_mask) == 0 && prefix == 0)
{
return NRF_ERROR_INVALID_PARAM;
}
}
}
#endif
m_esb_addr.pipe_prefixes[pipe] = prefix;
update_radio_addresses(NRF_ESB_ADDR_UPDATE_MASK_PREFIX);
#ifdef NRF52832_XXAA
return apply_address_workarounds();
#else
return NRF_SUCCESS;
#endif
}
uint32_t nrf_esb_enable_pipes(uint8_t enable_mask)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
VERIFY_TRUE((enable_mask | BIT_MASK_UINT_8(NRF_ESB_PIPE_COUNT)) == BIT_MASK_UINT_8(NRF_ESB_PIPE_COUNT), NRF_ERROR_INVALID_PARAM);
m_esb_addr.rx_pipes_enabled = enable_mask;
#ifdef NRF52832_XXAA
return apply_address_workarounds();
#else
return NRF_SUCCESS;
#endif
}
uint32_t nrf_esb_set_rf_channel(uint32_t channel)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
VERIFY_TRUE(channel <= 100, NRF_ERROR_INVALID_PARAM);
m_esb_addr.rf_channel = channel;
return NRF_SUCCESS;
}
uint32_t nrf_esb_get_rf_channel(uint32_t * p_channel)
{
VERIFY_PARAM_NOT_NULL(p_channel);
*p_channel = m_esb_addr.rf_channel;
return NRF_SUCCESS;
}
uint32_t nrf_esb_set_tx_power(nrf_esb_tx_power_t tx_output_power)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
if ( m_config_local.tx_output_power != tx_output_power )
{
m_config_local.tx_output_power = tx_output_power;
update_radio_tx_power();
}
return NRF_SUCCESS;
}
uint32_t nrf_esb_set_retransmit_delay(uint16_t delay)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
VERIFY_TRUE(delay >= m_wait_for_ack_timeout_us + RETRANSMIT_DELAY_US_OFFSET, NRF_ERROR_INVALID_PARAM);
m_config_local.retransmit_delay = delay;
return NRF_SUCCESS;
}
uint32_t nrf_esb_set_retransmit_count(uint16_t count)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
m_config_local.retransmit_count = count;
return NRF_SUCCESS;
}
uint32_t nrf_esb_set_bitrate(nrf_esb_bitrate_t bitrate)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
m_config_local.bitrate = bitrate;
return update_radio_bitrate() ? NRF_SUCCESS : NRF_ERROR_INVALID_PARAM;
}
uint32_t nrf_esb_reuse_pid(uint8_t pipe)
{
VERIFY_TRUE(m_nrf_esb_mainstate == NRF_ESB_STATE_IDLE, NRF_ERROR_BUSY);
VERIFY_TRUE(pipe < NRF_ESB_PIPE_COUNT, NRF_ERROR_INVALID_PARAM);
m_pids[pipe] = (m_pids[pipe] + NRF_ESB_PID_MAX) % (NRF_ESB_PID_MAX + 1);
return NRF_SUCCESS;
}
#ifdef NRF52832_XXAA
// Workaround neccessary on nRF52832 Rev. 1.
void NRF_ESB_BUGFIX_TIMER_IRQHandler(void)
{
if (NRF_ESB_BUGFIX_TIMER->EVENTS_COMPARE[0])
{
NRF_ESB_BUGFIX_TIMER->EVENTS_COMPARE[0] = 0;
// If the timeout timer fires and we are in the PTX receive ACK state, disable the radio
if (m_nrf_esb_mainstate == NRF_ESB_STATE_PTX_RX_ACK)
{
NRF_RADIO->TASKS_DISABLE = 1;
}
}
}
#endif