630 lines
23 KiB
C
Raw Normal View History

2025-08-19 09:49:41 +08:00
/**
* Copyright (c) 2014 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/**@file
*
* @defgroup ser_phy_spi_5W_hw_driver_master spi_5W_master.c
* @{
* @ingroup ser_phy_spi_5W_hw_driver_master
*
* @brief SPI_5W_RAW hardware driver.
*/
#include "app_error.h"
#include "app_util_platform.h"
#include "nrf_gpio.h"
#include "nrf.h"
#include "spi_5W_master.h"
#include "ser_config_5W_app.h"
#include "ser_phy_debug_app.h"
#include "sdk_common.h"
#define _static
#define DOUBLE_BUFFERED /**< A flag for enabling double buffering. */
#define SPI_PIN_DISCONNECTED 0xFFFFFFFF /**< A value used to the PIN deinitialization. */
#define SPI_DEFAULT_TX_BYTE 0x00 /**< Default byte (used to clock transmission
from slave to the master) */
typedef struct
{
NRF_SPI_Type * p_nrf_spi; /**< A pointer to the NRF SPI master */
IRQn_Type irq_type; /**< A type of NVIC IRQn */
uint8_t * p_tx_buffer; /**< A pointer to TX buffer. */
uint16_t tx_length; /**< A length of TX buffer. */
uint16_t tx_index; /**< A index of the current element in the TX buffer. */
uint8_t * p_rx_buffer; /**< A pointer to RX buffer. */
uint16_t rx_length; /**< A length RX buffer. */
uint16_t rx_index; /**< A index of the current element in the RX buffer. */
uint16_t max_length; /**< Max length (Max of the TX and RX length). */
uint16_t bytes_count;
uint8_t pin_slave_select; /**< A pin for Slave Select. */
spi_master_event_handler_t callback_event_handler; /**< A handler for event callback function. */
spi_master_state_t state; /**< A state of an instance of SPI master. */
bool start_flag;
bool abort_flag;
} spi_master_instance_t;
#ifdef _SPI_5W_
typedef enum
{
HOOK_STATE_DISABLED,
HOOK_STATE_IDLE,
HOOK_STATE_GUARDED,
HOOK_STATE_ABORTED,
HOOK_STATE_RESTARTED,
HOOK_STATE_PASSING
} spi_hook_state_t;
_static spi_master_event_handler_t m_ser_phy_event_handler;
_static spi_master_hw_instance_t m_spi_master_hw_instance;
_static spi_hook_state_t m_hook_state = HOOK_STATE_DISABLED;
#endif
#ifdef SER_PHY_DEBUG_APP_ENABLE
_static spi_master_raw_callback_t m_debug_callback;
#endif
_static spi_master_instance_t m_spi_master_instances[SPI_MASTER_HW_ENABLED_COUNT];
static __INLINE spi_master_instance_t * spi_master_get_instance(
const spi_master_hw_instance_t spi_master_hw_instance);
static __INLINE void spi_master_send_recv_irq(spi_master_instance_t * const p_spi_instance);
static __INLINE void spi_master_signal_evt(spi_master_instance_t * const p_spi_instance,
spi_master_evt_type_t event_type,
const uint16_t data);
#ifdef SPI_MASTER_0_ENABLE
/**
* @brief SPI0 interrupt handler.
*/
void SPI0_TWI0_IRQHandler(void)
{
if (NRF_SPI0->EVENTS_READY != 0)
{
NRF_SPI0->EVENTS_READY = 0;
spi_master_instance_t * p_spi_instance = spi_master_get_instance(SPI_MASTER_0);
spi_master_send_recv_irq(p_spi_instance);
}
}
#endif //SPI_MASTER_0_ENABLE
#ifdef SPI_MASTER_1_ENABLE
/**
* @brief SPI0 interrupt handler.
*/
void SPI1_TWI1_IRQHandler(void)
{
if (NRF_SPI1->EVENTS_READY != 0)
{
NRF_SPI1->EVENTS_READY = 0;
spi_master_instance_t * p_spi_instance = spi_master_get_instance(SPI_MASTER_1);
spi_master_send_recv_irq(p_spi_instance);
}
}
#endif //SPI_MASTER_1_ENABLE
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
/**@brief Function for getting an instance of SPI master. */
static __INLINE spi_master_instance_t * spi_master_get_instance(
const spi_master_hw_instance_t spi_master_hw_instance)
{
return &(m_spi_master_instances[(uint8_t)spi_master_hw_instance]);
}
/** @brief Function for initializing instance of SPI master by default values. */
static __INLINE void spi_master_init_hw_instance(NRF_SPI_Type * p_nrf_spi,
IRQn_Type irq_type,
spi_master_instance_t * p_spi_instance)
{
APP_ERROR_CHECK_BOOL(p_spi_instance != NULL);
p_spi_instance->p_nrf_spi = p_nrf_spi;
p_spi_instance->irq_type = irq_type;
p_spi_instance->p_tx_buffer = NULL;
p_spi_instance->tx_length = 0;
p_spi_instance->tx_index = 0;
p_spi_instance->p_rx_buffer = NULL;
p_spi_instance->rx_length = 0;
p_spi_instance->rx_index = 0;
p_spi_instance->bytes_count = 0;
p_spi_instance->max_length = 0;
p_spi_instance->pin_slave_select = 0;
p_spi_instance->callback_event_handler = NULL;
p_spi_instance->state = SPI_MASTER_STATE_DISABLED;
p_spi_instance->abort_flag = false;
p_spi_instance->start_flag = false;
}
/**@brief Function for initializing TX or RX buffer. */
static __INLINE void spi_master_buffer_init(uint8_t * const p_buf,
const uint16_t buf_len,
uint8_t * * pp_buf,
uint16_t * const p_buf_len,
uint16_t * const p_index)
{
APP_ERROR_CHECK_BOOL(pp_buf != NULL);
APP_ERROR_CHECK_BOOL(p_buf_len != NULL);
APP_ERROR_CHECK_BOOL(p_index != NULL);
*pp_buf = p_buf;
*p_buf_len = (p_buf != NULL) ? buf_len : 0;
*p_index = 0;
}
/**@brief Function for releasing TX or RX buffer. */
static __INLINE void spi_master_buffer_release(uint8_t * * const pp_buf, uint16_t * const p_buf_len)
{
APP_ERROR_CHECK_BOOL(pp_buf != NULL);
APP_ERROR_CHECK_BOOL(p_buf_len != NULL);
*pp_buf = NULL;
*p_buf_len = 0;
}
/**@brief Function for sending events by callback. */
static __INLINE void spi_master_signal_evt(spi_master_instance_t * const p_spi_instance,
spi_master_evt_type_t event_type,
const uint16_t data)
{
APP_ERROR_CHECK_BOOL(p_spi_instance != NULL);
if (p_spi_instance->callback_event_handler != NULL)
{
spi_master_evt_t event = {SPI_MASTER_EVT_TYPE_MAX, 0};
event.type = event_type;
event.data = data;
p_spi_instance->callback_event_handler(event);
}
}
/**@brief Function insert to a TX buffer another byte or two bytes (depends on flag @ref DOUBLE_BUFFERED). */
static __INLINE void spi_master_send_initial_bytes(spi_master_instance_t * const p_spi_instance)
{
APP_ERROR_CHECK_BOOL(p_spi_instance != NULL);
p_spi_instance->p_nrf_spi->TXD = ((p_spi_instance->p_tx_buffer != NULL) &&
(p_spi_instance->tx_index < p_spi_instance->tx_length)) ?
p_spi_instance->p_tx_buffer[p_spi_instance->tx_index] :
SPI_DEFAULT_TX_BYTE;
(p_spi_instance->tx_index)++;
#ifdef DOUBLE_BUFFERED
if (p_spi_instance->tx_index < p_spi_instance->max_length)
{
p_spi_instance->p_nrf_spi->TXD = ((p_spi_instance->p_tx_buffer != NULL) &&
(p_spi_instance->tx_index < p_spi_instance->tx_length)) ?
p_spi_instance->p_tx_buffer[p_spi_instance->tx_index] :
SPI_DEFAULT_TX_BYTE;
(p_spi_instance->tx_index)++;
}
#endif
}
/**@brief Function for receiving and sending data from IRQ. (The same for both IRQs). */
static __INLINE void spi_master_send_recv_irq(spi_master_instance_t * const p_spi_instance)
{
uint8_t rx_byte;
APP_ERROR_CHECK_BOOL(p_spi_instance != NULL);
APP_ERROR_CHECK_BOOL(p_spi_instance->state == SPI_MASTER_STATE_BUSY);
p_spi_instance->bytes_count++;
rx_byte = p_spi_instance->p_nrf_spi->RXD;
if (p_spi_instance->start_flag)
{
p_spi_instance->start_flag = false;
spi_master_signal_evt(p_spi_instance, SPI_MASTER_EVT_FIRST_BYTE_RECEIVED, (uint16_t)rx_byte);
}
else if (p_spi_instance->abort_flag ) //this is tricky, but callback for SPI_MASTER_EVT_FIRST_BYTE_RECEIVED will set this flag for a first byte, which is bad because there is still byte in a buffer
{ //and for a single byte transaction you will get XFERDONE event to restart
p_spi_instance->abort_flag = false;
p_spi_instance->state = SPI_MASTER_STATE_ABORTED;
nrf_gpio_pin_set(p_spi_instance->pin_slave_select);
spi_master_signal_evt(p_spi_instance, SPI_MASTER_EVT_TRANSFER_ABORTED, 0);
return;
}
if ((p_spi_instance->p_rx_buffer != NULL) &&
(p_spi_instance->rx_index < p_spi_instance->rx_length))
{
p_spi_instance->p_rx_buffer[p_spi_instance->rx_index++] = rx_byte;
}
if ((p_spi_instance->tx_index < p_spi_instance->max_length) && (!(p_spi_instance->abort_flag))) //do not TX if you know that there is an abort to be done - this should work for a DOUBLE BUFFERING ???
{
p_spi_instance->p_nrf_spi->TXD = ((p_spi_instance->p_tx_buffer != NULL) &&
(p_spi_instance->tx_index < p_spi_instance->tx_length)) ?
p_spi_instance->p_tx_buffer[p_spi_instance->tx_index] :
SPI_DEFAULT_TX_BYTE;
(p_spi_instance->tx_index)++;
}
if (p_spi_instance->bytes_count >= p_spi_instance->max_length)
{
APP_ERROR_CHECK_BOOL(p_spi_instance->bytes_count == p_spi_instance->max_length);
nrf_gpio_pin_set(p_spi_instance->pin_slave_select);
p_spi_instance->state = SPI_MASTER_STATE_IDLE;
spi_master_signal_evt(p_spi_instance,
SPI_MASTER_EVT_TRANSFER_COMPLETED,
p_spi_instance->tx_index);
}
return;
}
#endif //defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
/**
* @brief Function for opening and initializing a SPI master driver. */
uint32_t spi_master_open(const spi_master_hw_instance_t spi_master_hw_instance,
spi_master_config_t const * const p_spi_master_config)
{
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
VERIFY_PARAM_NOT_NULL(p_spi_master_config);
spi_master_instance_t * p_spi_instance = spi_master_get_instance(spi_master_hw_instance);
switch (spi_master_hw_instance)
{
#ifdef SPI_MASTER_0_ENABLE
case SPI_MASTER_0:
spi_master_init_hw_instance(NRF_SPI0, SPI0_TWI0_IRQn, p_spi_instance);
break;
#endif //SPI_MASTER_0_ENABLE
#ifdef SPI_MASTER_1_ENABLE
case SPI_MASTER_1:
spi_master_init_hw_instance(NRF_SPI1, SPI1_TWI1_IRQn, p_spi_instance);
break;
#endif //SPI_MASTER_1_ENABLE
default:
break;
}
//A Slave select must be set as high before setting it as output,
//because during connect it to the pin it causes glitches.
nrf_gpio_pin_set(p_spi_master_config->SPI_Pin_SS);
nrf_gpio_cfg_output(p_spi_master_config->SPI_Pin_SS);
nrf_gpio_pin_set(p_spi_master_config->SPI_Pin_SS);
//Configure GPIO
nrf_gpio_cfg_output(p_spi_master_config->SPI_Pin_SCK);
nrf_gpio_cfg_output(p_spi_master_config->SPI_Pin_MOSI);
nrf_gpio_cfg_input(p_spi_master_config->SPI_Pin_MISO, NRF_GPIO_PIN_NOPULL);
p_spi_instance->pin_slave_select = p_spi_master_config->SPI_Pin_SS;
/* Configure SPI hardware */
p_spi_instance->p_nrf_spi->PSELSCK = p_spi_master_config->SPI_Pin_SCK;
p_spi_instance->p_nrf_spi->PSELMOSI = p_spi_master_config->SPI_Pin_MOSI;
p_spi_instance->p_nrf_spi->PSELMISO = p_spi_master_config->SPI_Pin_MISO;
p_spi_instance->p_nrf_spi->FREQUENCY = p_spi_master_config->SPI_Freq;
p_spi_instance->p_nrf_spi->CONFIG =
(uint32_t)(p_spi_master_config->SPI_CPHA << SPI_CONFIG_CPHA_Pos) |
(p_spi_master_config->SPI_CPOL << SPI_CONFIG_CPOL_Pos) |
(p_spi_master_config->SPI_ORDER << SPI_CONFIG_ORDER_Pos);
/* Clear waiting interrupts and events */
p_spi_instance->p_nrf_spi->EVENTS_READY = 0;
NVIC_ClearPendingIRQ(p_spi_instance->irq_type);
NVIC_SetPriority(p_spi_instance->irq_type, APP_IRQ_PRIORITY_MID);
/* Clear event handler */
p_spi_instance->callback_event_handler = NULL;
/* Enable interrupt */
p_spi_instance->p_nrf_spi->INTENSET = (SPI_INTENSET_READY_Set << SPI_INTENCLR_READY_Pos);
NVIC_EnableIRQ(p_spi_instance->irq_type);
/* Enable SPI hardware */
p_spi_instance->p_nrf_spi->ENABLE = (SPI_ENABLE_ENABLE_Enabled << SPI_ENABLE_ENABLE_Pos);
/* Change state to IDLE */
p_spi_instance->state = SPI_MASTER_STATE_IDLE;
return NRF_SUCCESS;
#else
return NRF_ERROR_NOT_SUPPORTED;
#endif
}
/**
* @brief Function for closing a SPI master driver.
*/
void spi_master_close(const spi_master_hw_instance_t spi_master_hw_instance)
{
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
spi_master_instance_t * p_spi_instance = spi_master_get_instance(spi_master_hw_instance);
/* Disable interrupt */
NVIC_ClearPendingIRQ(p_spi_instance->irq_type);
NVIC_DisableIRQ(p_spi_instance->irq_type);
p_spi_instance->p_nrf_spi->ENABLE = (SPI_ENABLE_ENABLE_Disabled << SPI_ENABLE_ENABLE_Pos);
/* Set Slave Select pin as input with pull-up. */
nrf_gpio_pin_set(p_spi_instance->pin_slave_select);
nrf_gpio_cfg_input(p_spi_instance->pin_slave_select, NRF_GPIO_PIN_PULLUP);
p_spi_instance->pin_slave_select = (uint8_t)0xFF;
/* Disconnect pins from SPI hardware */
p_spi_instance->p_nrf_spi->PSELSCK = (uint32_t)SPI_PIN_DISCONNECTED;
p_spi_instance->p_nrf_spi->PSELMOSI = (uint32_t)SPI_PIN_DISCONNECTED;
p_spi_instance->p_nrf_spi->PSELMISO = (uint32_t)SPI_PIN_DISCONNECTED;
/* Reset to default values */
spi_master_init_hw_instance(NULL, (IRQn_Type)0, p_spi_instance);
#else
return;
#endif
}
/**
* @brief Function for getting current state of the SPI master driver.
*/
__INLINE spi_master_state_t spi_master_get_state(
const spi_master_hw_instance_t spi_master_hw_instance)
{
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
spi_master_instance_t * spi_instance = spi_master_get_instance(spi_master_hw_instance);
return spi_instance->state;
#else
return SPI_MASTER_STATE_DISABLED;
#endif
}
/**
* @brief Function for event handler registration.
*/
__INLINE void spi_master_evt_handler_reg(const spi_master_hw_instance_t spi_master_hw_instance,
spi_master_event_handler_t event_handler)
{
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
spi_master_instance_t * spi_instance = spi_master_get_instance(spi_master_hw_instance);
spi_instance->callback_event_handler = event_handler;
#else
return;
#endif
}
/**
* @brief Function for transmitting data between SPI master and SPI slave.
*/
uint32_t spi_master_send_recv(const spi_master_hw_instance_t spi_master_hw_instance,
uint8_t * const p_tx_buf, const uint16_t tx_buf_len,
uint8_t * const p_rx_buf, const uint16_t rx_buf_len)
{
#if defined(SPI_MASTER_0_ENABLE) || defined(SPI_MASTER_1_ENABLE)
spi_master_instance_t * p_spi_instance = spi_master_get_instance(spi_master_hw_instance);
uint32_t err_code = NRF_SUCCESS;
uint16_t max_length = 0;
if (p_spi_instance->state == SPI_MASTER_STATE_IDLE)
{
NVIC_DisableIRQ(p_spi_instance->irq_type);
max_length = (rx_buf_len > tx_buf_len) ? rx_buf_len : tx_buf_len;
if (max_length > 0)
{
p_spi_instance->state = SPI_MASTER_STATE_BUSY;
p_spi_instance->start_flag = true; //abort_flag should set by abort and cleared only by restart
p_spi_instance->bytes_count = 0;
p_spi_instance->max_length = max_length;
spi_master_buffer_release(&(p_spi_instance->p_tx_buffer), &(p_spi_instance->tx_length));
spi_master_buffer_release(&(p_spi_instance->p_rx_buffer), &(p_spi_instance->rx_length));
/* Initialize buffers */
spi_master_buffer_init(p_tx_buf, tx_buf_len, &(p_spi_instance->p_tx_buffer),
&(p_spi_instance->tx_length), &(p_spi_instance->tx_index));
spi_master_buffer_init(p_rx_buf, rx_buf_len, &(p_spi_instance->p_rx_buffer),
&(p_spi_instance->rx_length), &(p_spi_instance->rx_index));
nrf_gpio_pin_clear(p_spi_instance->pin_slave_select);
spi_master_send_initial_bytes(p_spi_instance);
spi_master_signal_evt(p_spi_instance, SPI_MASTER_EVT_TRANSFER_STARTED, max_length);
}
else
{
err_code = NRF_ERROR_INVALID_PARAM;
}
NVIC_EnableIRQ(p_spi_instance->irq_type);
}
else
{
err_code = NRF_ERROR_BUSY;
}
return err_code;
#else
return NRF_ERROR_NOT_SUPPORTED;
#endif
}
#ifdef _SPI_5W_
/**
* @brief Function for aborting transfer
*/
uint32_t spi_master_abort(const spi_master_hw_instance_t spi_master_hw_instance)
{
spi_master_instance_t * p_spi_instance = spi_master_get_instance(spi_master_hw_instance);
NVIC_DisableIRQ(p_spi_instance->irq_type);
if (p_spi_instance->state == SPI_MASTER_STATE_BUSY)
{
//set_flag - but only when there are events pending
//ignore when in IDLE - must be able to restart a completed transfer
p_spi_instance->abort_flag = true;
}
NVIC_EnableIRQ(p_spi_instance->irq_type);
return NRF_SUCCESS;
}
/**
* @brief Function for restarting transfer
*/
uint32_t spi_master_restart(const spi_master_hw_instance_t spi_master_hw_instance)
{
spi_master_instance_t * p_spi_instance = spi_master_get_instance(spi_master_hw_instance);
NVIC_DisableIRQ(p_spi_instance->irq_type);
spi_master_signal_evt(p_spi_instance, SPI_MASTER_EVT_TRANSFER_RESTARTED, 0);
p_spi_instance->state = SPI_MASTER_STATE_BUSY;
p_spi_instance->bytes_count = 0;
p_spi_instance->tx_index = 0;
p_spi_instance->rx_index = 0;
p_spi_instance->start_flag = true;
p_spi_instance->abort_flag = false; //you should force clearing abort flag - no other way for 1 byte transfer
nrf_gpio_pin_clear(p_spi_instance->pin_slave_select);
spi_master_send_initial_bytes(p_spi_instance);
NVIC_EnableIRQ(p_spi_instance->irq_type);
return NRF_SUCCESS;
}
static void spi_5W_master_event_handler(spi_master_evt_t evt)
{
switch (m_hook_state)
{
case HOOK_STATE_IDLE:
if (evt.type == SPI_MASTER_EVT_TRANSFER_STARTED)
{
DEBUG_EVT_SPI_MASTER_RAW_XFER_GUARDED(0);
m_hook_state = HOOK_STATE_GUARDED;
m_ser_phy_event_handler(evt);
}
break;
case HOOK_STATE_GUARDED:
if (evt.type == SPI_MASTER_EVT_FIRST_BYTE_RECEIVED)
{
if (evt.data == 0)
{
DEBUG_EVT_SPI_MASTER_RAW_XFER_PASSED(0);
m_hook_state = HOOK_STATE_PASSING;
}
else
{
DEBUG_EVT_SPI_MASTER_RAW_XFER_ABORTED(0);
m_hook_state = HOOK_STATE_ABORTED;
(void)spi_master_abort(m_spi_master_hw_instance);
}
}
break;
case HOOK_STATE_ABORTED:
if ((evt.type == SPI_MASTER_EVT_TRANSFER_ABORTED) ||
(evt.type == SPI_MASTER_EVT_TRANSFER_COMPLETED))
{
DEBUG_EVT_SPI_MASTER_RAW_XFER_RESTARTED(0);
m_hook_state = HOOK_STATE_RESTARTED;
(void)spi_master_restart(m_spi_master_hw_instance);
}
break;
case HOOK_STATE_RESTARTED:
if (evt.type == SPI_MASTER_EVT_TRANSFER_RESTARTED)
{
DEBUG_EVT_SPI_MASTER_RAW_XFER_GUARDED(0);
m_hook_state = HOOK_STATE_GUARDED;
}
break;
case HOOK_STATE_PASSING:
if (evt.type == SPI_MASTER_EVT_TRANSFER_COMPLETED)
{
m_hook_state = HOOK_STATE_IDLE;
m_ser_phy_event_handler(evt); //this is the only way to get a signal from complete transaction
}
break;
default:
break;
}
}
void spi_5W_master_evt_handler_reg(const spi_master_hw_instance_t spi_master_hw_instance,
spi_master_event_handler_t event_handler)
{
m_ser_phy_event_handler = event_handler;
m_spi_master_hw_instance = spi_master_hw_instance;
m_hook_state = HOOK_STATE_IDLE;
spi_master_evt_handler_reg(spi_master_hw_instance, spi_5W_master_event_handler);
return;
}
#endif
/** @} */