661 lines
24 KiB
C
Raw Permalink Normal View History

2025-08-19 09:49:41 +08:00
/**
* Copyright (c) 2015 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef NRF_DRV_UART_H__
#define NRF_DRV_UART_H__
#include <nrfx.h>
#if defined(UARTE_PRESENT) && NRFX_CHECK(NRFX_UARTE_ENABLED)
#define NRF_DRV_UART_WITH_UARTE
#endif
#if defined(UART_PRESENT) && NRFX_CHECK(NRFX_UART_ENABLED)
#define NRF_DRV_UART_WITH_UART
#endif
#if defined(NRF_DRV_UART_WITH_UARTE)
#include <nrfx_uarte.h>
#define NRF_DRV_UART_CREATE_UARTE(id) \
.uarte = NRFX_UARTE_INSTANCE(id),
#else
// Compilers (at least the smart ones) will remove the UARTE related code
// (blocks starting with "if (NRF_DRV_UART_USE_UARTE)") when it is not used,
// but to perform the compilation they need the following definitions.
#define nrfx_uarte_init(...) 0
#define nrfx_uarte_uninit(...)
#define nrfx_uarte_task_address_get(...) 0
#define nrfx_uarte_event_address_get(...) 0
#define nrfx_uarte_tx(...) 0
#define nrfx_uarte_tx_in_progress(...) 0
#define nrfx_uarte_tx_abort(...)
#define nrfx_uarte_rx(...) 0
#define nrfx_uarte_rx_ready(...) 0
#define nrfx_uarte_rx_abort(...)
#define nrfx_uarte_errorsrc_get(...) 0
#define NRF_DRV_UART_CREATE_UARTE(id)
#endif
#if defined(NRF_DRV_UART_WITH_UART)
#include <nrfx_uart.h>
#define NRF_DRV_UART_CREATE_UART(id) _NRF_DRV_UART_CREATE_UART(id)
#define _NRF_DRV_UART_CREATE_UART(id) NRF_DRV_UART_CREATE_UART_##id
#define NRF_DRV_UART_CREATE_UART_0 \
.uart = NRFX_UART_INSTANCE(0),
#define NRF_DRV_UART_CREATE_UART_1 \
.uart = { .p_reg = NULL },
#else
// Compilers (at least the smart ones) will remove the UART related code
// (blocks starting with "if (NRF_DRV_UART_USE_UART)") when it is not used,
// but to perform the compilation they need the following definitions.
#define nrfx_uart_init(...) 0
#define nrfx_uart_uninit(...)
#define nrfx_uart_task_address_get(...) 0
#define nrfx_uart_event_address_get(...) 0
#define nrfx_uart_tx(...) 0
#define nrfx_uart_tx_in_progress(...) 0
#define nrfx_uart_tx_abort(...)
#define nrfx_uart_rx(...) 0
#define nrfx_uart_rx_enable(...)
#define nrfx_uart_rx_disable(...)
#define nrfx_uart_rx_ready(...) 0
#define nrfx_uart_rx_abort(...)
#define nrfx_uart_errorsrc_get(...) 0
#define NRF_DRV_UART_CREATE_UART(id)
// This part is for old modules that use directly UART HAL definitions
// (to make them compilable for chips that have only UARTE).
#define NRF_UART_BAUDRATE_1200 NRF_UARTE_BAUDRATE_1200
#define NRF_UART_BAUDRATE_2400 NRF_UARTE_BAUDRATE_2400
#define NRF_UART_BAUDRATE_4800 NRF_UARTE_BAUDRATE_4800
#define NRF_UART_BAUDRATE_9600 NRF_UARTE_BAUDRATE_9600
#define NRF_UART_BAUDRATE_14400 NRF_UARTE_BAUDRATE_14400
#define NRF_UART_BAUDRATE_19200 NRF_UARTE_BAUDRATE_19200
#define NRF_UART_BAUDRATE_28800 NRF_UARTE_BAUDRATE_28800
#define NRF_UART_BAUDRATE_38400 NRF_UARTE_BAUDRATE_38400
#define NRF_UART_BAUDRATE_57600 NRF_UARTE_BAUDRATE_57600
#define NRF_UART_BAUDRATE_76800 NRF_UARTE_BAUDRATE_76800
#define NRF_UART_BAUDRATE_115200 NRF_UARTE_BAUDRATE_115200
#define NRF_UART_BAUDRATE_230400 NRF_UARTE_BAUDRATE_230400
#define NRF_UART_BAUDRATE_250000 NRF_UARTE_BAUDRATE_250000
#define NRF_UART_BAUDRATE_460800 NRF_UARTE_BAUDRATE_460800
#define NRF_UART_BAUDRATE_921600 NRF_UARTE_BAUDRATE_921600
#define NRF_UART_BAUDRATE_1000000 NRF_UARTE_BAUDRATE_1000000
typedef nrf_uarte_baudrate_t nrf_uart_baudrate_t;
#define NRF_UART_ERROR_OVERRUN_MASK NRF_UARTE_ERROR_OVERRUN_MASK
#define NRF_UART_ERROR_PARITY_MASK NRF_UARTE_ERROR_PARITY_MASK
#define NRF_UART_ERROR_FRAMING_MASK NRF_UARTE_ERROR_PARITY_MASK
#define NRF_UART_ERROR_BREAK_MASK NRF_UARTE_ERROR_BREAK_MASK
typedef nrf_uarte_error_mask_t nrf_uart_error_mask_t;
#define NRF_UART_HWFC_DISABLED NRF_UARTE_HWFC_DISABLED
#define NRF_UART_HWFC_ENABLED NRF_UARTE_HWFC_ENABLED
typedef nrf_uarte_hwfc_t nrf_uart_hwfc_t;
#define NRF_UART_PARITY_EXCLUDED NRF_UARTE_PARITY_EXCLUDED
#define NRF_UART_PARITY_INCLUDED NRF_UARTE_PARITY_INCLUDED
typedef nrf_uarte_parity_t nrf_uart_parity_t;
typedef nrf_uarte_task_t nrf_uart_task_t;
typedef nrf_uarte_event_t nrf_uart_event_t;
#define NRF_UART_PSEL_DISCONNECTED NRF_UARTE_PSEL_DISCONNECTED
#define nrf_uart_event_clear(...)
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup nrf_drv_uart UART driver - legacy layer
* @{
* @ingroup nrf_uart
* @brief Layer providing compatibility with the former API.
*/
/**
* @brief Structure for the UART driver instance.
*/
typedef struct
{
uint8_t inst_idx;
#if defined(NRF_DRV_UART_WITH_UARTE)
nrfx_uarte_t uarte;
#endif
#if defined(NRF_DRV_UART_WITH_UART)
nrfx_uart_t uart;
#endif
} nrf_drv_uart_t;
/**
* @brief Macro for creating an UART driver instance.
*/
#define NRF_DRV_UART_INSTANCE(id) \
{ \
.inst_idx = id, \
NRF_DRV_UART_CREATE_UARTE(id) \
NRF_DRV_UART_CREATE_UART(id) \
}
/**
* @brief Types of UART driver events.
*/
typedef enum
{
NRF_DRV_UART_EVT_TX_DONE, ///< Requested TX transfer completed.
NRF_DRV_UART_EVT_RX_DONE, ///< Requested RX transfer completed.
NRF_DRV_UART_EVT_ERROR, ///< Error reported by UART peripheral.
} nrf_drv_uart_evt_type_t;
/**@brief Structure for UART configuration. */
typedef struct
{
uint32_t pseltxd; ///< TXD pin number.
uint32_t pselrxd; ///< RXD pin number.
uint32_t pselcts; ///< CTS pin number.
uint32_t pselrts; ///< RTS pin number.
void * p_context; ///< Context passed to interrupt handler.
nrf_uart_hwfc_t hwfc; ///< Flow control configuration.
nrf_uart_parity_t parity; ///< Parity configuration.
nrf_uart_baudrate_t baudrate; ///< Baudrate.
uint8_t interrupt_priority; ///< Interrupt priority.
#if defined(NRF_DRV_UART_WITH_UARTE) && defined(NRF_DRV_UART_WITH_UART)
bool use_easy_dma;
#endif
} nrf_drv_uart_config_t;
#if defined(NRF_DRV_UART_WITH_UARTE) && defined(NRF_DRV_UART_WITH_UART)
extern uint8_t nrf_drv_uart_use_easy_dma[];
#define NRF_DRV_UART_DEFAULT_CONFIG_USE_EASY_DMA .use_easy_dma = true,
#else
#define NRF_DRV_UART_DEFAULT_CONFIG_USE_EASY_DMA
#endif
/**@brief UART default configuration. */
#define NRF_DRV_UART_DEFAULT_CONFIG \
{ \
.pseltxd = NRF_UART_PSEL_DISCONNECTED, \
.pselrxd = NRF_UART_PSEL_DISCONNECTED, \
.pselcts = NRF_UART_PSEL_DISCONNECTED, \
.pselrts = NRF_UART_PSEL_DISCONNECTED, \
.p_context = NULL, \
.hwfc = (nrf_uart_hwfc_t)UART_DEFAULT_CONFIG_HWFC, \
.parity = (nrf_uart_parity_t)UART_DEFAULT_CONFIG_PARITY, \
.baudrate = (nrf_uart_baudrate_t)UART_DEFAULT_CONFIG_BAUDRATE, \
.interrupt_priority = UART_DEFAULT_CONFIG_IRQ_PRIORITY, \
NRF_DRV_UART_DEFAULT_CONFIG_USE_EASY_DMA \
}
/**@brief Structure for UART transfer completion event. */
typedef struct
{
uint8_t * p_data; ///< Pointer to memory used for transfer.
uint8_t bytes; ///< Number of bytes transfered.
} nrf_drv_uart_xfer_evt_t;
/**@brief Structure for UART error event. */
typedef struct
{
nrf_drv_uart_xfer_evt_t rxtx; ///< Transfer details includes number of bytes transfered.
uint32_t error_mask;///< Mask of error flags that generated the event.
} nrf_drv_uart_error_evt_t;
/**@brief Structure for UART event. */
typedef struct
{
nrf_drv_uart_evt_type_t type; ///< Event type.
union
{
nrf_drv_uart_xfer_evt_t rxtx; ///< Data provided for transfer completion events.
nrf_drv_uart_error_evt_t error;///< Data provided for error event.
} data;
} nrf_drv_uart_event_t;
/**
* @brief UART interrupt event handler.
*
* @param[in] p_event Pointer to event structure. Event is allocated on the stack so it is available
* only within the context of the event handler.
* @param[in] p_context Context passed to interrupt handler, set on initialization.
*/
typedef void (*nrf_uart_event_handler_t)(nrf_drv_uart_event_t * p_event, void * p_context);
/**
* @brief Function for initializing the UART driver.
*
* This function configures and enables UART. After this function GPIO pins are controlled by UART.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] p_config Initial configuration.
* @param[in] event_handler Event handler provided by the user. If not provided driver works in
* blocking mode.
*
* @retval NRFX_SUCCESS If initialization was successful.
* @retval NRFX_ERROR_INVALID_STATE If driver is already initialized.
*/
ret_code_t nrf_drv_uart_init(nrf_drv_uart_t const * p_instance,
nrf_drv_uart_config_t const * p_config,
nrf_uart_event_handler_t event_handler);
/**
* @brief Function for uninitializing the UART driver.
* @param[in] p_instance Pointer to the driver instance structure.
*/
__STATIC_INLINE
void nrf_drv_uart_uninit(nrf_drv_uart_t const * p_instance);
/**
* @brief Function for getting the address of a specific UART task.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] task Task.
*
* @return Task address.
*/
__STATIC_INLINE
uint32_t nrf_drv_uart_task_address_get(nrf_drv_uart_t const * p_instance,
nrf_uart_task_t task);
/**
* @brief Function for getting the address of a specific UART event.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] event Event.
*
* @return Event address.
*/
__STATIC_INLINE
uint32_t nrf_drv_uart_event_address_get(nrf_drv_uart_t const * p_instance,
nrf_uart_event_t event);
/**
* @brief Function for sending data over UART.
*
* If an event handler was provided in nrf_drv_uart_init() call, this function
* returns immediately and the handler is called when the transfer is done.
* Otherwise, the transfer is performed in blocking mode, i.e. this function
* returns when the transfer is finished. Blocking mode is not using interrupt so
* there is no context switching inside the function.
*
* @note Peripherals using EasyDMA (i.e. UARTE) require that the transfer buffers
* are placed in the Data RAM region. If they are not and UARTE instance is
* used, this function will fail with error code NRFX_ERROR_INVALID_ADDR.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] p_data Pointer to data.
* @param[in] length Number of bytes to send.
*
* @retval NRFX_SUCCESS If initialization was successful.
* @retval NRFX_ERROR_BUSY If driver is already transferring.
* @retval NRFX_ERROR_FORBIDDEN If the transfer was aborted from a different context
* (blocking mode only, also see @ref nrf_drv_uart_rx_disable).
* @retval NRFX_ERROR_INVALID_ADDR If p_data does not point to RAM buffer (UARTE only).
*/
__STATIC_INLINE
ret_code_t nrf_drv_uart_tx(nrf_drv_uart_t const * p_instance,
uint8_t const * const p_data,
uint8_t length);
/**
* @brief Function for checking if UART is currently transmitting.
*
* @param[in] p_instance Pointer to the driver instance structure.
*
* @retval true If UART is transmitting.
* @retval false If UART is not transmitting.
*/
__STATIC_INLINE
bool nrf_drv_uart_tx_in_progress(nrf_drv_uart_t const * p_instance);
/**
* @brief Function for aborting any ongoing transmission.
* @note @ref NRF_DRV_UART_EVT_TX_DONE event will be generated in non-blocking mode. Event will
* contain number of bytes sent until abort was called. If Easy DMA is not used event will be
* called from the function context. If Easy DMA is used it will be called from UART interrupt
* context.
*
* @param[in] p_instance Pointer to the driver instance structure.
*/
__STATIC_INLINE
void nrf_drv_uart_tx_abort(nrf_drv_uart_t const * p_instance);
/**
* @brief Function for receiving data over UART.
*
* If an event handler was provided in the nrf_drv_uart_init() call, this function
* returns immediately and the handler is called when the transfer is done.
* Otherwise, the transfer is performed in blocking mode, i.e. this function
* returns when the transfer is finished. Blocking mode is not using interrupt so
* there is no context switching inside the function.
* The receive buffer pointer is double buffered in non-blocking mode. The secondary
* buffer can be set immediately after starting the transfer and will be filled
* when the primary buffer is full. The double buffering feature allows
* receiving data continuously.
*
* @note Peripherals using EasyDMA (i.e. UARTE) require that the transfer buffers
* are placed in the Data RAM region. If they are not and UARTE driver instance
* is used, this function will fail with error code NRFX_ERROR_INVALID_ADDR.
*
* @param[in] p_instance Pointer to the driver instance structure.
* @param[in] p_data Pointer to data.
* @param[in] length Number of bytes to receive.
*
* @retval NRFX_SUCCESS If initialization was successful.
* @retval NRFX_ERROR_BUSY If the driver is already receiving
* (and the secondary buffer has already been set
* in non-blocking mode).
* @retval NRFX_ERROR_FORBIDDEN If the transfer was aborted from a different context
* (blocking mode only, also see @ref nrf_drv_uart_rx_disable).
* @retval NRFX_ERROR_INTERNAL If UART peripheral reported an error.
* @retval NRFX_ERROR_INVALID_ADDR If p_data does not point to RAM buffer (UARTE only).
*/
__STATIC_INLINE
ret_code_t nrf_drv_uart_rx(nrf_drv_uart_t const * p_instance,
uint8_t * p_data,
uint8_t length);
/**
* @brief Function for testing the receiver state in blocking mode.
*
* @param[in] p_instance Pointer to the driver instance structure.
*
* @retval true If the receiver has at least one byte of data to get.
* @retval false If the receiver is empty.
*/
__STATIC_INLINE
bool nrf_drv_uart_rx_ready(nrf_drv_uart_t const * p_instance);
/**
* @brief Function for enabling the receiver.
*
* UART has a 6-byte-long RX FIFO and it is used to store incoming data. If a user does not call the
* UART receive function before the FIFO is filled, an overrun error will appear. Enabling the receiver
* without specifying an RX buffer is supported only in UART mode (without Easy DMA). The receiver must be
* explicitly closed by the user @sa nrf_drv_uart_rx_disable. This function asserts if the mode is wrong.
*
* @param[in] p_instance Pointer to the driver instance structure.
*/
__STATIC_INLINE
void nrf_drv_uart_rx_enable(nrf_drv_uart_t const * p_instance);
/**
* @brief Function for disabling the receiver.
*
* This function must be called to close the receiver after it has been explicitly enabled by
* @sa nrf_drv_uart_rx_enable. The feature is supported only in UART mode (without Easy DMA). The function
* asserts if mode is wrong.
*
* @param[in] p_instance Pointer to the driver instance structure.
*/
__STATIC_INLINE
void nrf_drv_uart_rx_disable(nrf_drv_uart_t const * p_instance);
/**
* @brief Function for aborting any ongoing reception.
* @note @ref NRF_DRV_UART_EVT_RX_DONE event will be generated in non-blocking mode. The event will
* contain the number of bytes received until abort was called. The event is called from UART interrupt
* context.
*
* @param[in] p_instance Pointer to the driver instance structure.
*/
__STATIC_INLINE
void nrf_drv_uart_rx_abort(nrf_drv_uart_t const * p_instance);
/**
* @brief Function for reading error source mask. Mask contains values from @ref nrf_uart_error_mask_t.
* @note Function should be used in blocking mode only. In case of non-blocking mode, an error event is
* generated. Function clears error sources after reading.
*
* @param[in] p_instance Pointer to the driver instance structure.
*
* @retval Mask of reported errors.
*/
__STATIC_INLINE
uint32_t nrf_drv_uart_errorsrc_get(nrf_drv_uart_t const * p_instance);
#ifndef SUPPRESS_INLINE_IMPLEMENTATION
#if defined(NRF_DRV_UART_WITH_UARTE) && defined(NRF_DRV_UART_WITH_UART)
#define NRF_DRV_UART_USE_UARTE (nrf_drv_uart_use_easy_dma[p_instance->inst_idx])
#elif defined(NRF_DRV_UART_WITH_UARTE)
#define NRF_DRV_UART_USE_UARTE true
#else
#define NRF_DRV_UART_USE_UARTE false
#endif
#define NRF_DRV_UART_USE_UART (!NRF_DRV_UART_USE_UARTE)
__STATIC_INLINE
void nrf_drv_uart_uninit(nrf_drv_uart_t const * p_instance)
{
if (NRF_DRV_UART_USE_UARTE)
{
nrfx_uarte_uninit(&p_instance->uarte);
}
else if (NRF_DRV_UART_USE_UART)
{
nrfx_uart_uninit(&p_instance->uart);
}
}
__STATIC_INLINE
uint32_t nrf_drv_uart_task_address_get(nrf_drv_uart_t const * p_instance,
nrf_uart_task_t task)
{
uint32_t result = 0;
if (NRF_DRV_UART_USE_UARTE)
{
result = nrfx_uarte_task_address_get(&p_instance->uarte,
(nrf_uarte_task_t)task);
}
else if (NRF_DRV_UART_USE_UART)
{
result = nrfx_uart_task_address_get(&p_instance->uart, task);
}
return result;
}
__STATIC_INLINE
uint32_t nrf_drv_uart_event_address_get(nrf_drv_uart_t const * p_instance,
nrf_uart_event_t event)
{
uint32_t result = 0;
if (NRF_DRV_UART_USE_UARTE)
{
result = nrfx_uarte_event_address_get(&p_instance->uarte,
(nrf_uarte_event_t)event);
}
else if (NRF_DRV_UART_USE_UART)
{
result = nrfx_uart_event_address_get(&p_instance->uart, event);
}
return result;
}
__STATIC_INLINE
ret_code_t nrf_drv_uart_tx(nrf_drv_uart_t const * p_instance,
uint8_t const * p_data,
uint8_t length)
{
uint32_t result = 0;
if (NRF_DRV_UART_USE_UARTE)
{
result = nrfx_uarte_tx(&p_instance->uarte,
p_data,
length);
}
else if (NRF_DRV_UART_USE_UART)
{
result = nrfx_uart_tx(&p_instance->uart,
p_data,
length);
}
return result;
}
__STATIC_INLINE
bool nrf_drv_uart_tx_in_progress(nrf_drv_uart_t const * p_instance)
{
bool result = 0;
if (NRF_DRV_UART_USE_UARTE)
{
result = nrfx_uarte_tx_in_progress(&p_instance->uarte);
}
else if (NRF_DRV_UART_USE_UART)
{
result = nrfx_uart_tx_in_progress(&p_instance->uart);
}
return result;
}
__STATIC_INLINE
void nrf_drv_uart_tx_abort(nrf_drv_uart_t const * p_instance)
{
if (NRF_DRV_UART_USE_UARTE)
{
nrfx_uarte_tx_abort(&p_instance->uarte);
}
else if (NRF_DRV_UART_USE_UART)
{
nrfx_uart_tx_abort(&p_instance->uart);
}
}
__STATIC_INLINE
ret_code_t nrf_drv_uart_rx(nrf_drv_uart_t const * p_instance,
uint8_t * p_data,
uint8_t length)
{
uint32_t result = 0;
if (NRF_DRV_UART_USE_UARTE)
{
result = nrfx_uarte_rx(&p_instance->uarte,
p_data,
length);
}
else if (NRF_DRV_UART_USE_UART)
{
result = nrfx_uart_rx(&p_instance->uart,
p_data,
length);
}
return result;
}
__STATIC_INLINE
bool nrf_drv_uart_rx_ready(nrf_drv_uart_t const * p_instance)
{
bool result = 0;
if (NRF_DRV_UART_USE_UARTE)
{
result = nrfx_uarte_rx_ready(&p_instance->uarte);
}
else if (NRF_DRV_UART_USE_UART)
{
result = nrfx_uart_rx_ready(&p_instance->uart);
}
return result;
}
__STATIC_INLINE
void nrf_drv_uart_rx_enable(nrf_drv_uart_t const * p_instance)
{
if (NRF_DRV_UART_USE_UARTE)
{
NRFX_ASSERT(false); // not supported
}
else if (NRF_DRV_UART_USE_UART)
{
nrfx_uart_rx_enable(&p_instance->uart);
}
}
__STATIC_INLINE
void nrf_drv_uart_rx_disable(nrf_drv_uart_t const * p_instance)
{
if (NRF_DRV_UART_USE_UARTE)
{
NRFX_ASSERT(false); // not supported
}
else if (NRF_DRV_UART_USE_UART)
{
nrfx_uart_rx_disable(&p_instance->uart);
}
}
__STATIC_INLINE
void nrf_drv_uart_rx_abort(nrf_drv_uart_t const * p_instance)
{
if (NRF_DRV_UART_USE_UARTE)
{
nrfx_uarte_rx_abort(&p_instance->uarte);
}
else if (NRF_DRV_UART_USE_UART)
{
nrfx_uart_rx_abort(&p_instance->uart);
}
}
__STATIC_INLINE
uint32_t nrf_drv_uart_errorsrc_get(nrf_drv_uart_t const * p_instance)
{
uint32_t result = 0;
if (NRF_DRV_UART_USE_UARTE)
{
result = nrfx_uarte_errorsrc_get(&p_instance->uarte);
}
else if (NRF_DRV_UART_USE_UART)
{
nrf_uart_event_clear(p_instance->uart.p_reg, NRF_UART_EVENT_ERROR);
result = nrfx_uart_errorsrc_get(&p_instance->uart);
}
return result;
}
#endif // SUPPRESS_INLINE_IMPLEMENTATION
/** @} */
#ifdef __cplusplus
}
#endif
#endif // NRF_DRV_UART_H__