349 lines
12 KiB
C
Raw Permalink Normal View History

2025-08-19 09:49:41 +08:00
/**
* Copyright (c) 2017 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(NRF_SPI_MNGR)
#include "nrf_spi_mngr.h"
#include "nrf_assert.h"
#include "app_util_platform.h"
typedef volatile struct
{
bool transaction_in_progress;
uint8_t transaction_result;
} nrf_spi_mngr_cb_data_t;
static ret_code_t start_transfer(nrf_spi_mngr_t const * p_nrf_spi_mngr)
{
ASSERT(p_nrf_spi_mngr != NULL);
// use a local variable to avoid using two volatile variables in one
// expression
uint8_t curr_transfer_idx = p_nrf_spi_mngr->p_nrf_spi_mngr_cb->current_transfer_idx;
nrf_spi_mngr_transfer_t const * p_transfer =
&p_nrf_spi_mngr->p_nrf_spi_mngr_cb->p_current_transaction->p_transfers[curr_transfer_idx];
return nrf_drv_spi_transfer(&p_nrf_spi_mngr->spi,
p_transfer->p_tx_data, p_transfer->tx_length,
p_transfer->p_rx_data, p_transfer->rx_length);
}
static void transaction_begin_signal(nrf_spi_mngr_t const * p_nrf_spi_mngr)
{
ASSERT(p_nrf_spi_mngr != NULL);
nrf_spi_mngr_transaction_t const * p_current_transaction =
p_nrf_spi_mngr->p_nrf_spi_mngr_cb->p_current_transaction;
if (p_current_transaction->begin_callback != NULL)
{
void * p_user_data = p_current_transaction->p_user_data;
p_current_transaction->begin_callback(p_user_data);
}
}
static void transaction_end_signal(nrf_spi_mngr_t const * p_nrf_spi_mngr,
ret_code_t result)
{
ASSERT(p_nrf_spi_mngr != NULL);
nrf_spi_mngr_transaction_t const * p_current_transaction =
p_nrf_spi_mngr->p_nrf_spi_mngr_cb->p_current_transaction;
if (p_current_transaction->end_callback != NULL)
{
void * p_user_data = p_current_transaction->p_user_data;
p_current_transaction->end_callback(result, p_user_data);
}
}
static void spi_event_handler(nrf_drv_spi_evt_t const * p_event,
void * p_context);
// This function starts pending transaction if there is no current one or
// when 'switch_transaction' parameter is set to true. It is important to
// switch to new transaction without setting 'p_nrf_spi_mngr->p_curr_transaction'
// to NULL in between, since this pointer is used to check idle status - see
// 'nrf_spi_mngr_is_idle()'.
static void start_pending_transaction(nrf_spi_mngr_t const * p_nrf_spi_mngr,
bool switch_transaction)
{
ASSERT(p_nrf_spi_mngr != NULL);
while (1)
{
bool start_transaction = false;
nrf_spi_mngr_cb_t * p_cb = p_nrf_spi_mngr->p_nrf_spi_mngr_cb;
CRITICAL_REGION_ENTER();
if (switch_transaction || nrf_spi_mngr_is_idle(p_nrf_spi_mngr))
{
if (nrf_queue_pop(p_nrf_spi_mngr->p_queue,
(void *)(&p_cb->p_current_transaction))
== NRF_SUCCESS)
{
start_transaction = true;
}
else
{
p_cb->p_current_transaction = NULL;
}
}
CRITICAL_REGION_EXIT();
if (!start_transaction)
{
return;
}
nrf_drv_spi_config_t const * p_instance_cfg;
if (p_cb->p_current_transaction->p_required_spi_cfg == NULL)
{
p_instance_cfg = &p_cb->default_configuration;
}
else
{
p_instance_cfg = p_cb->p_current_transaction->p_required_spi_cfg;
}
ret_code_t result;
if (memcmp(p_cb->p_current_configuration, p_instance_cfg, sizeof(*p_instance_cfg)) != 0)
{
nrf_drv_spi_uninit(&p_nrf_spi_mngr->spi);
result = nrf_drv_spi_init(&p_nrf_spi_mngr->spi,
p_instance_cfg,
spi_event_handler,
(void *)p_nrf_spi_mngr);
ASSERT(result == NRF_SUCCESS);
p_cb->p_current_configuration = p_instance_cfg;
}
// Try to start first transfer for this new transaction.
p_cb->current_transfer_idx = 0;
// Execute user code if available before starting transaction
transaction_begin_signal(p_nrf_spi_mngr);
result = start_transfer(p_nrf_spi_mngr);
// If transaction started successfully there is nothing more to do here now.
if (result == NRF_SUCCESS)
{
return;
}
// Transfer failed to start - notify user that this transaction
// cannot be started and try with next one (in next iteration of
// the loop).
transaction_end_signal(p_nrf_spi_mngr, result);
switch_transaction = true;
}
}
// This function shall be called to handle SPI events. It shall be mainly used by SPI IRQ for
// finished tranfer.
static void spi_event_handler(nrf_drv_spi_evt_t const * p_event,
void * p_context)
{
ASSERT(p_event != NULL);
ASSERT(p_context != NULL);
ret_code_t result;
nrf_spi_mngr_cb_t * p_cb = ((nrf_spi_mngr_t const *)p_context)->p_nrf_spi_mngr_cb;
// This callback should be called only during transaction.
ASSERT(p_cb->p_current_transaction != NULL);
if (p_event->type == NRF_DRV_SPI_EVENT_DONE)
{
result = NRF_SUCCESS;
// Transfer finished successfully. If there is another one to be
// performed in the current transaction, start it now.
// use a local variable to avoid using two volatile variables in one
// expression
uint8_t curr_transfer_idx = p_cb->current_transfer_idx;
++curr_transfer_idx;
if (curr_transfer_idx < p_cb->p_current_transaction->number_of_transfers)
{
p_cb->current_transfer_idx = curr_transfer_idx;
result = start_transfer(((nrf_spi_mngr_t const *)p_context));
if (result == NRF_SUCCESS)
{
// The current transaction is running and its next transfer
// has been successfully started. There is nothing more to do.
return;
}
// if the next transfer could not be started due to some error
// we finish the transaction with this error code as the result
}
}
else
{
result = NRF_ERROR_INTERNAL;
}
// The current transaction has been completed or interrupted by some error.
// Notify the user and start next one (if there is any).
transaction_end_signal(((nrf_spi_mngr_t const *)p_context), result);
// we switch transactions here ('p_nrf_spi_mngr->p_current_transaction' is set
// to NULL only if there is nothing more to do) in order to not generate
// spurious idle status (even for a moment)
start_pending_transaction(((nrf_spi_mngr_t const *)p_context), true);
}
ret_code_t nrf_spi_mngr_init(nrf_spi_mngr_t const * p_nrf_spi_mngr,
nrf_drv_spi_config_t const * p_default_spi_config)
{
ASSERT(p_nrf_spi_mngr != NULL);
ASSERT(p_nrf_spi_mngr->p_queue != NULL);
ASSERT(p_nrf_spi_mngr->p_queue->size > 0);
ASSERT(p_default_spi_config != NULL);
ret_code_t err_code;
err_code = nrf_drv_spi_init(&p_nrf_spi_mngr->spi,
p_default_spi_config,
spi_event_handler,
(void *)p_nrf_spi_mngr);
if (err_code == NRF_SUCCESS)
{
nrf_spi_mngr_cb_t * p_cb = p_nrf_spi_mngr->p_nrf_spi_mngr_cb;
p_cb->p_current_transaction = NULL;
p_cb->default_configuration = *p_default_spi_config;
p_cb->p_current_configuration = &p_cb->default_configuration;
}
return err_code;
}
void nrf_spi_mngr_uninit(nrf_spi_mngr_t const * p_nrf_spi_mngr)
{
ASSERT(p_nrf_spi_mngr != NULL);
nrf_drv_spi_uninit(&p_nrf_spi_mngr->spi);
p_nrf_spi_mngr->p_nrf_spi_mngr_cb->p_current_transaction = NULL;
}
ret_code_t nrf_spi_mngr_schedule(nrf_spi_mngr_t const * p_nrf_spi_mngr,
nrf_spi_mngr_transaction_t const * p_transaction)
{
ASSERT(p_nrf_spi_mngr != NULL);
ASSERT(p_transaction != NULL);
ASSERT(p_transaction->p_transfers != NULL);
ASSERT(p_transaction->number_of_transfers != 0);
ret_code_t result = nrf_queue_push(p_nrf_spi_mngr->p_queue, (void *)(&p_transaction));
if (result == NRF_SUCCESS)
{
// New transaction has been successfully added to queue,
// so if we are currently idle it's time to start the job.
start_pending_transaction(p_nrf_spi_mngr, false);
}
return result;
}
static void spi_internal_transaction_cb(ret_code_t result, void * p_user_data)
{
nrf_spi_mngr_cb_data_t * p_cb_data = (nrf_spi_mngr_cb_data_t *)p_user_data;
p_cb_data->transaction_result = result;
p_cb_data->transaction_in_progress = false;
}
ret_code_t nrf_spi_mngr_perform(nrf_spi_mngr_t const * p_nrf_spi_mngr,
nrf_drv_spi_config_t const * p_config,
nrf_spi_mngr_transfer_t const * p_transfers,
uint8_t number_of_transfers,
void (* user_function)(void))
{
ASSERT(p_nrf_spi_mngr != NULL);
ASSERT(p_transfers != NULL);
ASSERT(number_of_transfers != 0);
nrf_spi_mngr_cb_data_t cb_data =
{
.transaction_in_progress = true
};
nrf_spi_mngr_transaction_t internal_transaction =
{
.begin_callback = NULL,
.end_callback = spi_internal_transaction_cb,
.p_user_data = (void *)&cb_data,
.p_transfers = p_transfers,
.number_of_transfers = number_of_transfers,
.p_required_spi_cfg = p_config
};
ret_code_t result = nrf_spi_mngr_schedule(p_nrf_spi_mngr, &internal_transaction);
VERIFY_SUCCESS(result);
while (cb_data.transaction_in_progress)
{
if (user_function)
{
user_function();
}
}
return cb_data.transaction_result;
}
#endif //NRF_MODULE_ENABLED(NRF_SPI_MNGR)