625 lines
18 KiB
C
Raw Permalink Normal View History

2025-08-19 09:49:41 +08:00
/**
* Copyright (c) 2016 - 2020, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(NRF_FSTORAGE)
#include "nrf_fstorage_sd.h"
#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include "nordic_common.h"
#include "nrf_soc.h"
#include "nrf_sdh.h"
#include "nrf_sdh_soc.h"
#include "nrf_atomic.h"
#include "nrf_atfifo.h"
#include "app_util_platform.h"
#if (NRF_FSTORAGE_SD_MAX_WRITE_SIZE % 4)
#error NRF_FSTORAGE_SD_MAX_WRITE_SIZE must be a multiple of the word size.
#endif
/**@brief fstorage operation codes. */
typedef enum
{
NRF_FSTORAGE_OP_WRITE, //!< Write bytes to flash.
NRF_FSTORAGE_OP_ERASE //!< Erase flash pages.
} nrf_fstorage_sd_opcode_t;
ANON_UNIONS_ENABLE;
/**@brief fstorage operation queue element. */
typedef struct
{
nrf_fstorage_t const * p_fs; //!< The fstorage instance that requested the operation.
nrf_fstorage_sd_opcode_t op_code; //!< Requested operation.
void * p_param; //!< User-defined parameter passed to the event handler.
union
{
struct
{
void const * p_src; //!< Data to be written to flash.
uint32_t dest; //!< Destination of the data in flash.
uint32_t len; //!< Length of the data to be written (in bytes).
uint32_t offset; //!< Write offset.
} write;
struct
{
uint32_t page; //!< Physical page number.
uint32_t progress; //!< Number of pages erased.
uint32_t pages_to_erase; //!< Total number of pages to erase.
} erase;
};
} nrf_fstorage_sd_op_t;
ANON_UNIONS_DISABLE;
typedef enum
{
NRF_FSTORAGE_STATE_IDLE, //!< No operations requested to the SoftDevice.
NRF_FSTORAGE_STATE_OP_PENDING, //!< A non-fstorage operation is pending.
NRF_FSTORAGE_STATE_OP_EXECUTING, //!< An fstorage operation is executing.
} nrf_fstorage_sd_state_t;
/**@brief Internal state. */
typedef struct
{
nrf_atomic_flag_t initialized; //!< fstorage is initalized.
nrf_atomic_flag_t queue_running; //!< The queue is running.
/** Prevent API calls from entering queue_process(). */
nrf_fstorage_sd_state_t state; //!< Internal fstorage state.
uint32_t retries; //!< Number of times an operation has been retried on timeout.
bool sd_enabled; //!< The SoftDevice is enabled.
bool paused; //!< A SoftDevice state change is impending.
/** Do not load a new operation when the last one completes. */
} nrf_fstorage_sd_work_t;
void nrf_fstorage_sys_evt_handler(uint32_t, void *);
bool nrf_fstorage_sdh_req_handler(nrf_sdh_req_evt_t, void *);
void nrf_fstorage_sdh_state_handler(nrf_sdh_state_evt_t, void *);
/* Flash device information. */
static nrf_fstorage_info_t m_flash_info =
{
#if defined(NRF51)
.erase_unit = 1024,
#elif defined(NRF52_SERIES)
.erase_unit = 4096,
#endif
.program_unit = 4,
.rmap = true,
.wmap = false,
};
/* Queue of fstorage operations. */
NRF_ATFIFO_DEF(m_fifo, nrf_fstorage_sd_op_t, NRF_FSTORAGE_SD_QUEUE_SIZE);
/* Define a nrf_sdh_soc event observer to receive SoftDevice system events. */
NRF_SDH_SOC_OBSERVER(m_sys_obs, 0, nrf_fstorage_sys_evt_handler, NULL);
/* nrf_sdh request observer. */
NRF_SDH_REQUEST_OBSERVER(m_req_obs, 0) =
{
.handler = nrf_fstorage_sdh_req_handler,
};
/* nrf_sdh state observer. */
NRF_SDH_STATE_OBSERVER(m_state_obs, 0) =
{
.handler = nrf_fstorage_sdh_state_handler,
};
static nrf_fstorage_sd_work_t m_flags; /* Internal status. */
static nrf_fstorage_sd_op_t * m_p_cur_op; /* The current operation being executed. */
static nrf_atfifo_item_get_t m_iget_ctx; /* Context for nrf_atfifo_item_get() and nrf_atfifo_item_free(). */
/* Send events to the application. */
static void event_send(nrf_fstorage_sd_op_t const * p_op, ret_code_t result)
{
if (p_op->p_fs->evt_handler == NULL)
{
/* Nothing to do. */
return;
}
nrf_fstorage_evt_t evt =
{
.result = result,
.p_param = p_op->p_param,
};
switch (p_op->op_code)
{
case NRF_FSTORAGE_OP_WRITE:
evt.id = NRF_FSTORAGE_EVT_WRITE_RESULT;
evt.addr = p_op->write.dest;
evt.p_src = p_op->write.p_src;
evt.len = p_op->write.len;
break;
case NRF_FSTORAGE_OP_ERASE:
evt.id = NRF_FSTORAGE_EVT_ERASE_RESULT;
evt.addr = (p_op->erase.page * m_flash_info.erase_unit);
evt.len = p_op->erase.pages_to_erase;
break;
default:
/* Should not happen. */
break;
}
p_op->p_fs->evt_handler(&evt);
}
/* Write to flash. */
static uint32_t write_execute(nrf_fstorage_sd_op_t const * p_op)
{
uint32_t chunk_len;
chunk_len = MIN(p_op->write.len - p_op->write.offset, NRF_FSTORAGE_SD_MAX_WRITE_SIZE);
chunk_len = MAX(1, chunk_len / m_flash_info.program_unit);
/* Cast to p_src to uint32_t to perform arithmetic. */
uint32_t * p_dest = (uint32_t*)(p_op->write.dest + p_op->write.offset);
uint32_t const * p_src = (uint32_t*)((uint32_t)p_op->write.p_src + p_op->write.offset);
return sd_flash_write(p_dest, p_src, chunk_len);
}
/* Erase flash page(s). */
static uint32_t erase_execute(nrf_fstorage_sd_op_t const * p_op)
{
return sd_flash_page_erase(p_op->erase.page + p_op->erase.progress);
}
/* Free the current queue element. */
static void queue_free(void)
{
(void) nrf_atfifo_item_free(m_fifo, &m_iget_ctx);
}
/* Load a new operation from the queue. */
static bool queue_load_next(void)
{
m_p_cur_op = nrf_atfifo_item_get(m_fifo, &m_iget_ctx);
return (m_p_cur_op != NULL);
}
/* Execute an operation in the queue. */
static void queue_process(void)
{
uint32_t rc;
if (m_flags.state == NRF_FSTORAGE_STATE_IDLE)
{
if (!queue_load_next())
{
/* No more operations, nothing to do. */
m_flags.queue_running = false;
return;
}
}
m_flags.state = NRF_FSTORAGE_STATE_OP_EXECUTING;
switch (m_p_cur_op->op_code)
{
case NRF_FSTORAGE_OP_WRITE:
rc = write_execute(m_p_cur_op);
break;
case NRF_FSTORAGE_OP_ERASE:
rc = erase_execute(m_p_cur_op);
break;
default:
rc = NRF_ERROR_INTERNAL;
break;
}
switch (rc)
{
case NRF_SUCCESS:
{
/* The operation was accepted by the SoftDevice.
* If the SoftDevice is enabled, wait for a system event. Otherwise,
* the SoftDevice call is synchronous and will not send an event so we simulate it. */
if (!m_flags.sd_enabled)
{
nrf_fstorage_sys_evt_handler(NRF_EVT_FLASH_OPERATION_SUCCESS, NULL);
}
} break;
case NRF_ERROR_BUSY:
{
/* The SoftDevice is executing a flash operation that was not requested by fstorage.
* Stop processing the queue until a system event is received. */
m_flags.state = NRF_FSTORAGE_STATE_OP_PENDING;
} break;
default:
{
/* An error has occurred. We cannot proceed further with this operation. */
event_send(m_p_cur_op, NRF_ERROR_INTERNAL);
/* Reset the internal state so we can accept other operations. */
m_flags.state = NRF_FSTORAGE_STATE_IDLE;
m_flags.queue_running = false;
/* Free the current queue element. */
queue_free();
} break;
}
}
/* Start processing the queue if it is not running and fstorage is not paused. */
static void queue_start(void)
{
if ( (!nrf_atomic_flag_set_fetch(&m_flags.queue_running))
&& (!m_flags.paused))
{
queue_process();
}
}
/* Flash operation success callback. Keeps track of the progress of an operation. */
static bool on_operation_success(nrf_fstorage_sd_op_t * const p_op)
{
/* Reset the retry counter on success. */
m_flags.retries = 0;
switch (p_op->op_code)
{
case NRF_FSTORAGE_OP_WRITE:
{
/* Update the offset only if the operation is successful
* so that it can be retried in case it times out. */
uint32_t const chunk_len = MIN(p_op->write.len - p_op->write.offset,
NRF_FSTORAGE_SD_MAX_WRITE_SIZE);
p_op->write.offset += chunk_len;
if (p_op->write.offset == p_op->write.len)
{
return true;
}
} break;
case NRF_FSTORAGE_OP_ERASE:
{
p_op->erase.progress++;
if (p_op->erase.progress == p_op->erase.pages_to_erase)
{
return true;
}
} break;
default:
/* Should not happen. */
break;
}
return false;
}
/* Flash operation failure callback. */
static bool on_operation_failure(nrf_fstorage_sd_op_t const * p_op)
{
UNUSED_PARAMETER(p_op);
m_flags.retries++;
if (m_flags.retries > NRF_FSTORAGE_SD_MAX_RETRIES)
{
/* Maximum amount of retries reached. Give up. */
m_flags.retries = 0;
return true;
}
return false;
}
static ret_code_t init(nrf_fstorage_t * p_fs, void * p_param)
{
UNUSED_PARAMETER(p_param);
p_fs->p_flash_info = &m_flash_info;
if (!nrf_atomic_flag_set_fetch(&m_flags.initialized))
{
#if NRF_SDH_ENABLED
m_flags.sd_enabled = nrf_sdh_is_enabled();
#endif
(void) NRF_ATFIFO_INIT(m_fifo);
}
return NRF_SUCCESS;
}
static ret_code_t uninit(nrf_fstorage_t * p_fs, void * p_param)
{
UNUSED_PARAMETER(p_fs);
UNUSED_PARAMETER(p_param);
/* The state is re-initialized upon init().
* The common uninitialization code is run by the caller. */
memset(&m_flags, 0x00, sizeof(m_flags));
(void) nrf_atfifo_clear(m_fifo);
return NRF_SUCCESS;
}
static ret_code_t write(nrf_fstorage_t const * p_fs,
uint32_t dest,
void const * p_src,
uint32_t len,
void * p_param)
{
nrf_fstorage_sd_op_t * p_op;
nrf_atfifo_item_put_t iput_ctx;
/* Get a free queue element. */
p_op = nrf_atfifo_item_alloc(m_fifo, &iput_ctx);
if (p_op == NULL)
{
return NRF_ERROR_NO_MEM;
}
/* Initialize the operation. */
memset(p_op, 0x00, sizeof(nrf_fstorage_sd_op_t));
p_op->op_code = NRF_FSTORAGE_OP_WRITE;
p_op->p_fs = p_fs;
p_op->p_param = p_param;
p_op->write.dest = dest;
p_op->write.p_src = p_src;
p_op->write.len = len;
/* Put the operation on the queue. */
(void) nrf_atfifo_item_put(m_fifo, &iput_ctx);
queue_start();
return NRF_SUCCESS;
}
static ret_code_t read(nrf_fstorage_t const * p_fs, uint32_t src, void * p_dest, uint32_t len)
{
memcpy(p_dest, (uint32_t*)src, len);
return NRF_SUCCESS;
}
static ret_code_t erase(nrf_fstorage_t const * p_fs,
uint32_t page_addr,
uint32_t len,
void * p_param)
{
nrf_fstorage_sd_op_t * p_op;
nrf_atfifo_item_put_t iput_ctx;
/* Get a free queue element. */
p_op = nrf_atfifo_item_alloc(m_fifo, &iput_ctx);
if (p_op == NULL)
{
return NRF_ERROR_NO_MEM;
}
/* Initialize the operation. */
memset(p_op, 0x00, sizeof(nrf_fstorage_sd_op_t));
p_op->op_code = NRF_FSTORAGE_OP_ERASE;
p_op->p_fs = p_fs;
p_op->p_param = p_param;
p_op->erase.page = (page_addr / m_flash_info.erase_unit);
p_op->erase.pages_to_erase = len;
/* Put the operation on the queue. */
(void) nrf_atfifo_item_put(m_fifo, &iput_ctx);
queue_start();
return NRF_SUCCESS;
}
static uint8_t const * rmap(nrf_fstorage_t const * p_fs, uint32_t addr)
{
UNUSED_PARAMETER(p_fs);
return (uint8_t*)addr;
}
static uint8_t * wmap(nrf_fstorage_t const * p_fs, uint32_t addr)
{
UNUSED_PARAMETER(p_fs);
UNUSED_PARAMETER(addr);
/* Not supported. */
return NULL;
}
static bool is_busy(nrf_fstorage_t const * p_fs)
{
UNUSED_PARAMETER(p_fs);
return (m_flags.state != NRF_FSTORAGE_STATE_IDLE);
}
void nrf_fstorage_sys_evt_handler(uint32_t sys_evt, void * p_context)
{
UNUSED_PARAMETER(p_context);
if ( (sys_evt != NRF_EVT_FLASH_OPERATION_SUCCESS)
&& (sys_evt != NRF_EVT_FLASH_OPERATION_ERROR))
{
/* Ignore any non-flash events. */
return;
}
switch (m_flags.state)
{
case NRF_FSTORAGE_STATE_IDLE:
/* Ignore flash events if no flash operation was requested. */
return;
case NRF_FSTORAGE_STATE_OP_PENDING:
/* The SoftDevice has completed a flash operation that was not requested by fstorage.
* It should be possible to request an operation now.
* Process the queue at the end of this function. */
break;
case NRF_FSTORAGE_STATE_OP_EXECUTING:
{
/* Handle the result of a flash operation initiated by this module. */
bool operation_finished = false;
switch (sys_evt)
{
case NRF_EVT_FLASH_OPERATION_SUCCESS:
operation_finished = on_operation_success(m_p_cur_op);
break;
case NRF_EVT_FLASH_OPERATION_ERROR:
operation_finished = on_operation_failure(m_p_cur_op);
break;
default:
break;
}
if (operation_finished)
{
/* The operation has finished. Change state to NRF_FSTORAGE_STATE_IDLE
* so that queue_process() will fetch a new operation from the queue. */
m_flags.state = NRF_FSTORAGE_STATE_IDLE;
event_send(m_p_cur_op, (sys_evt == NRF_EVT_FLASH_OPERATION_SUCCESS) ?
NRF_SUCCESS : NRF_ERROR_TIMEOUT);
/* Free the queue element after sending out the event to prevent API calls made
* in the event context to queue elements indefinitely, without this function
* ever returning in case the SoftDevice calls are synchronous. */
queue_free();
}
} break;
}
if (!m_flags.paused)
{
queue_process();
}
else
{
/* A flash operation has completed. Let the SoftDevice change state. */
(void) nrf_sdh_request_continue();
}
}
bool nrf_fstorage_sdh_req_handler(nrf_sdh_req_evt_t req, void * p_context)
{
UNUSED_PARAMETER(req);
UNUSED_PARAMETER(p_context);
m_flags.paused = true;
/* If there are any operations ongoing, pause the SoftDevice state change. */
return (m_flags.state == NRF_FSTORAGE_STATE_IDLE);
}
void nrf_fstorage_sdh_state_handler(nrf_sdh_state_evt_t state, void * p_context)
{
UNUSED_PARAMETER(p_context);
if ( (state == NRF_SDH_EVT_STATE_ENABLED)
|| (state == NRF_SDH_EVT_STATE_DISABLED))
{
m_flags.paused = false;
m_flags.sd_enabled = (state == NRF_SDH_EVT_STATE_ENABLED);
/* Execute any operations still in the queue. */
queue_process();
}
}
/* Exported API implementation. */
nrf_fstorage_api_t nrf_fstorage_sd =
{
.init = init,
.uninit = uninit,
.read = read,
.write = write,
.erase = erase,
.rmap = rmap,
.wmap = wmap,
.is_busy = is_busy
};
#endif // NRF_FSTORAGE_ENABLED